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The analysis of current economic conditions is done by assessing the real-
time trend-cycle of major economic indicators (leading, coincident and
lagging) using percentage changes, based on seasonally adjusted data
calculated for months or quarters in chronological sequence. This is known
as recession and recovery analysis.

Major economic and financial changes of global nature have introduced
more variability in the data⇒ statistical agencies have shown an interest in
providing trend-cycle or smoothed seasonally adjusted graphs to facilitate
recession and recovery analysis.
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The linear filter developed by Henderson (1916) is the most frequently
applied to estimate the trend-cycle component of seasonally adjusted
economic indicators.

It is available in nonparametric seasonal adjustment software, such as the
U.S. Bureau of the Census X11 method (Shiskin et al., 1967) and its
variants, X11ARIMA, X12ARIMA, and X13.

The Henderson smoother has the property that fitted to exact cubic func-
tions will reproduce their values, and fitted to stochastic cubic polynomials
it will give smoother results than those obtained by ordinary least squares.
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The study of the properties of the Henderson filters have been extensively
discussed by many authors, among them, Cholette (1981); Kenny and
Durbin (1982); Dagum and Laniel (1987); Dagum (1996); Gray and
Thomson (1996); Loader (1999); Ladiray and Quenneville (2001); Findley
and Martin (2006); Dagum and Luati (2009a, 2012).

Dagum and Bianconcini (2008) are the first to derive the symmetric
Henderson smoother using the Reproducing Kernel Hilbert Space (RKHS)
methodology.
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A RKHS is a Hilbert space characterized by a kernel that reproduces, via
an inner product, every function of the space or, equivalently, a Hilbert
space of real valued functions with the property that every point evaluation
functional is bounded and linear.

The RKHS approach followed in our study is strictly nonparametric.

Berlinet (1993)→ A kernel estimator of order p can always be decomposed
into the product of a reproducing kernel Rp−1, belonging to the space of
polynomials of degree at most p− 1, times a probability density function
f0 with finite moments up to order 2p.
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Asymmetric filters associated with the Henderson filter of length 2m+ 1 are developed
by Musgrave (1964), and applied to the m first and last observations.

They are derived to minimize the mean squared revision between final and preliminary
estimates subject to the constraint that the sum of the weights is equal to one. The
assumption made is that at the end of the series, the seasonally adjusted values follow
a linear trend-cycle plus a purely random irregular.

Several authors have studied the statistical properties of the Musgrave filters, among
others, Laniel (1985); Doherty (2001); Gray and Thomson (2002); Quenneville et al.
(2003); Dagum and Luati (2009b, 2012).

Dagum and Bianconcini (2008, 2013) → first to introduce a RKHS approach to derive
asymmetric filters that were close to those of Musgrave (1964).
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Trend estimates for the first and last m data points are subject to revisions
due to new observations entering in the estimation and to filter changes.

Reduction of revisions due to filter changes→ important property that the
asymmetric filters should possess together with a fast detection of turning
points.

In the RKHS framework, the bandwidth parameter strongly affects the
statistical properties of the asymmetric filters.
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Aim of the study
We propose time-varying bandwidth parameters in agreement with the time-varying
asymmetric filters.

Criteria of bandwidth selection based on the minimization of

1. the distance between the gain functions of asymmetric and symmetric filters
→ reliability

2. the phase shift function over the domain of the signal → timeliness

3. the distance between the transfer functions of asymmetric and symmetric filters
→ optimal compromise between reducing revisions (increasing reliability) and
reducing phase shift (increasing timeliness).
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Another important property is the time path of the last point predicted
trend as new observations are added to the series. An optimal asymmetric
filter should have a time path that converges fast and monotonically to
the final estimates.
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US New Orders for Durable Goods

Important indicator of the state of the economy, often allowing to detect shifts in the
US economy up to six months in advance.
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New Orders for consumer Durable Goods, US [February 1992 - March 2013]: original series and two-sided nonparametric trend
estimates obtained by the Henderson filter. Source: U.S. Census Bureau.
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Reducing the size of real time trend-cycle revisions
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New Orders for consumer Durable Goods, US: trend-cycle estimates based on symmetric Henderson filter, last point Musgrave
and RKHS filters based on local bandwidth parameters.
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Detection of true turning points

The reduction in the revisions can be achieved at the expenses of an increase in the
time lag of detecting a true turning point.
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US NODG series: revision path before June 2009 turning point of the optimal asymmetric kernel ( left) and Musgrave ( right)
filters.
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Linear filters in RKHS

Basic assumptions

yt = gt + ut t = 1, · · · , N

• {yt, t = 1, · · · , N} input series: seasonally adjusted or without seasonality.

• ut noise: either a white noise, WN(0, σ2
u), or an ARMA process.

• gt, t = 1, · · · , T, signal: smooth function of time, locally represented by a
polynomial of degree p in a variable j, which measures the distance between yt
and its neighboring observations yt+j , j = −m, ...,m.
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This is equivalent to estimate the trend-cycle ĝt as a weighted moving average as follows

ĝt =
m∑

j=−m

wjyt+j = w′y t = m+ 1, · · · , N −m,

• w′ =
[
w−m · · · w0 · · · wm

]
: weights

• y′ =
[
yt−m · · · yt · · · yt+m

]
: input series.

Several nonparametric estimators, based on different sets of weights w, have been
developed in the literature.
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Henderson kernel representations
[Henderson, 1916;Kenny and Durbin, 1982; Ladiray and Quenneville, 2001]

The Henderson filter consists of fitting a cubic polynomial by means of weighted least
squares to the input y, where the weights are given by Wj ∝ {(m+ 1)2 − j2}{(m+
2)2 − j2}{(m+ 3)2 − j2}.

[Loader, 1999]

• ĝt =
∑m

j=−m φ(j)Wjyt+j .

– φ(j): cubic polynomial on j.

• For largem→ equivalent kernel representation, withtWj approximated by the tri-
weight function m6(1− (j/m)2)3, such that the weight diagram is approximately
315
512 (3− 11(j/m)2)(1− (j/m)2)3.
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RKHS representation

[Dagum and Bianconcini 2008 and 2013]

K4(t) =
3∑

i=0
Pi(t)Pi(0)f0(t) t ∈ [−1, 1]

• Dagum and Bianconcini (2008) proposed the biweight function
f0B(t) = 15

16 (1 − t2)2, t ∈ [−1, 1]: better approximation than the triweight
function when the Henderson filters are of short length, such as 5, 7, 9, 13 and
23 terms.

• Pi, i = 0, 1, 2, 3,: corresponding orthonormal polynomials.
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Equivalently,

K4(t) = det(H0
4[1, t])

det(H0
4) f0B(t) t ∈ [−1, 1]

• H0
4 is the Hankel matrix whose elements are the moments of f0, that is

µr =
∫ 1
−1 t

rf0(t)dt.

• H0
4[1, t] is the matrix obtained by replacing the first column of H0

4 by the vector
t =

[
1 t t2 t3

]′
.
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Applied to real data,

wj =

[
µ4 − µ2

(
j
b

)2
S0µ4 − S2µ2

]
1
b
f0B

(
j

b

)
j = −m, · · · ,m.

• Sr =
∑m

j=−m
1
b

(
j
b

)r
f0
(
j
b

)
: discrete approximation of µr (function of m and b).

Fundamental choice of the bandwidth parameter b

• to ensure that only 2m+ 1 data values surrounding the target point will receive
nonzero weight;

• approximate, as close as possible, the continuous moments with the discrete
ones, as well as the biweight density function;

• global time-invariant bandwidth b equal to m+ 1 [Dagum and Bianconcini 2008 and 2013].
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Asymmetric filters in RKHS
At both ends of the sample period, only 2m, · · · ,m+ 1 data values are available ⇒ the
effective domain of the kernel function K4 is not [−1, 1] as for any interior point, but
[−1, q∗], where q∗ = q/b, q = 0, ...,m− 1.

- Symmetry of the kernel is lost →
∫ q∗
−1 K4(t)dt 6= 1.

- Moment conditions are not longer satisfied, that is
∫ q∗
−1 t

iK4(t)dt 6= 0 for i = 1, 2, 3.

“Cut-and-normalize” boundary kernels [Gasser and Muller, 1979; Kyung-Joon and Schucany, 1998]

Kq∗
4 (t) = K4(t)∫ q∗

−1 K4(t)dt
t ∈ [−1, q∗].
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Equivalently,

Kq∗
4 (t) = det(H0

4[1, t])
det(H0

4[1,µq∗])f0B(t) t ∈ [−1, q∗].

µq∗r =
∫ q∗
−1 t

rf0B(t)dt being proportional to the moments of the truncated biweight
density f0B on the support [−1, q∗].

Applied to real data, wj =

[
µ4−µ2

(
j
bq

)2

S
q
0µ4−S

q
2µ2

]
1
bq
f0B

(
j
bq

)
j = −m, · · · , q; q = 0, · · · ,m− 1

• Sqr =
∑q

j=−m
1
bq

(
j
bq

)r
f0B

(
j
bq

)
is the discrete approximation of truncated

continuous moment µq∗r (function of m, q, and bq).

• bq, q = 0, · · · ,m−1: time-varying local bandwidths, specific for each asymmetric
filter.
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In this study, we select optimal time-varying bandwidth bq in order to improve the
statistical properties of the filters for real time trend-cycle prediction.

• Reduction of the revisions due to time-varying filters for the last m data points.
– function of the relationship between the truncated Sqr and untruncated Sr

discrete moments, and their respective density functions.
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• Fast detection of turning points.
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Frequency domain analysis
The main effects induced by a linear filter on a given input are fully described by the
Fourier transform of the filter weights, wj , j = −m, · · · ,m,

Γ(ω) =
m∑

j=−m

wj exp(−i2πωj)

= G(ω) exp(−i2πφ(ω)) ω ∈ [−1/2, 1/2]

• G(ω) = |Γ(ω)|: gain function → it measures the amplitude of the output for a
sinusoidal input of unit amplitude.

• φ(ω): phase function → it shows the shift in phase of the output compared with
the input.
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Γ(ω) plays a fundamental role to measure that part of revisions due to filter changes.

Measure of total revisions [Musgrave, 1964]

E

[
q∑

j=−m

wq,jyt−j −
m∑

j=−m

wjyt−j

]2

q = 0, · · · ,m− 1

This criterion can be also reexpressed in the frequency domain as follows∫ 1/2

−1/2
|Γq(ω)− Γ(ω)|2ei4πωthy(ω)dω

• hy(ω): unknown spectral density of yt

• Γq(ω) and Γ(ω): transfer functions corresponding to the asymmetric and sym-
metric filters, respectively.
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The total revisions are function of filter changes and new innovations entering in the
input series. The quantity |Γq(ω) − Γ(ω)|2 accounts for the revisions due to filter
changes.

Using the law of cosines, [Wildi, 2008]

∫ 1/2
0 |Γq(ω)−Γ(ω)|2dω =

∫ 1/2
0 |Gq(ω)−G(ω)|2dω+4

∫ 1/2
0 Gq(ω)G(ω) sin

(
φ
(
ω
2

))2
dω

•
∫ 1/2

0 |Gq(ω) − G(ω)|2dω: part of the total mean square filter error which is
attributed to the amplitude function of the asymmetric filter.

•
∫ 1/2

0 Gq(ω)G(ω) sin
(
φ
(
ω
2

))2
dω measures the distinctive contribution of the

phase shift.
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Optimal bandwidth criteria

bq,Γ = min
bq

√
2
∫ 1/2

0
|Γq(ω)− Γ(ω)|2dω

bq,G = min
bq

√
2
∫ 1/2

0
|Gq(ω)−G(ω)|2dω

bq,φ = min
bq

√
2
∫

ΩS
Gq(ω)G(ω) [1− cos(φq(ω))] ≈ min

bq

[
1

0.06

∫
ΩS

φ(ω)
2πω dω

]
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Optimal bandwidth values (13-term symmetric filter)

q 0 1 2 3 4 5
bq,Γ 9.54 7.88 7.07 6.88 6.87 6.94
bq,G 11.78 9.24 7.34 6.85 6.84 6.95
bq,φ 6.01 6.01 7.12 8.44 9.46 10.39

The main impact of these bandwidth parameters on the weight given to the last
input point is that the larger is the bandwidth, the closer is the weight to the
corresponding final one. This means that a larger b implies smaller variance and
larger bias.
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Time path of the asymmetric filters based on bq,Γ (left) and bq,G (right)
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Time path of the asymmetric filters based on bq,φ (left) and of the Musgrave

asymmetric filters (right)
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Gain (left) and phase shift (right) functions for the last point asymmetric filters

based on b0,Γ, b0,G, and b0,φ compared with the last point Musgrave filter.
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Gain (left) and phase shift (right) functions for the previous to the last point

asymmetric filters based on b1,Γ, b1,G, and b1,φ compared with the previous to

the last point Musgrave filter.
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Empirical illustration
We evaluate the properties of the asymmetric filters derived following the RKHS
methodology versus the Musgrave ones in terms of both total revision reduction
and detection of turning points.

• Set of series consisting of leading, coincident, and lagging indicators of the US
economy.

• The series considered are seasonally adjusted and cover different periods.

• Symmetric filter lengths selected according to the I/C (noise to signal) ratio. In
the sample, the ratio ranges from 0.20 to 1.98, hence filters of length 9 and 13
terms are applied.
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Reduction of total revisions of real time trend-cycle
estimates

The comparisons are based on the relative trend-cycle revisions between the final
F and last point L estimates, that is,

Rt = Ft − Lt
Ft

, t = m+ 1, · · · , N −m

For each series, we calculate the ratio between the Mean Square Percentage Error
(MSPE) of the revisions derived following the RKHS methodology and those
corresponding to the last point Musgrave filter.
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Macro-area Series
b0,G
Mus

b0,Γ
Mus

b0,φ
Mus

Leading Average weekly overtime hours: manufacturing 0.492 0.630 0.922
New orders for durable goods 0.493 0.633 0.931
New orders for nondefense capital goods 0.493 0.633 0.931
New private housing units authorized by building permits 0.475 0.651 0.927
S&P 500 stock price index 0.454 0.591 0.856
M2 money stock 0.508 0.655 0.932
10-year treasury constant maturity rate 0.446 0.582 0.849
University of Michigan: consumer sentiment 0.480 0.621 0.912

Coincident All employees: total nonfarm 0.517 0.666 0.951
Real personal income excluding current transfer receipts 0.484 0.627 0.903
Industrial production index 0.477 0.616 0.884
Manufacturing and trade sales 0.471 0.606 0.869

Lagging Average (mean) duration of unemployment 0.509 0.649 0.937
Inventory to sales ratio 0.483 0.618 0.894
Index of total labor cost per unit of output 0.515 0.663 0.983
Commercial and industrial loans at all commercial banks 0.473 0.610 0.871
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Timeliness of the real time trend-cycle estimates based on b0,G, b0,Γ, b0,φ, and Musgrave filters (in number of

months)

Macro-area Series b0,G b0,Γ b0,φ Musgrave

Leading Average weekly overtime hours: manufacturing 2 2 1 1
New orders for durable goods 2 2 1 1
New orders for nondefense capital goods 2 2 1 2
New private housing units authorized by building permits 1 1 1 1
S&P 500 stock price index 1 1 1 1
10-year treasury constant maturity rate 1 1 1 1
University of Michigan: consumer sentiment 2 2 1 1

Coincident All employees: total nonfarm 1 1 1 1
Real personal income excluding current transfer receipts 1 1 1 1
Industrial production index 2 2 1 1
Manufacturing and trade sales 1 1 1 1

Lagging Average (mean) duration of unemployment 1 1 1 1
Inventory to sales ratio 2 2 1 1
Index of total labor cost per unit of output 1 1 1 1
Commercial and industrial loans at all commercial banks 1 1 1 1
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Turning point detection

A turning point is generally defined to occur at time t if (downturn):

yt−k ≤ . . . ≤ yt−1 > yt ≥ yt+1 ≥ . . . ≥ yt+m

or (upturn)
yt−k ≥ . . . ≥ yt−1 < yt ≤ yt+1 ≤ . . . ≤ yt+m

Here, k = 3 and m = 1 given the smoothness of the trend cycle data [Zellner et al.,

1991].
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Time lag in detecting true turning points based on bq,G, bq,Γ, bq,φ, and Musgrave filters

Macro-area Series bq,G bq,Γ bq,φ Musgrave

Leading Average weekly overtime hours: manufacturing 1 1 1 1
New orders for durable goods 1 2 3 2
New orders for nondefense capital goods 1 2 2 3
New private housing units authorized by building permits 2 2 3 3
S&P 500 stock price index 1 2 2 2
10-year treasury constant maturity rate 1 1 1 2
University of Michigan: consumer sentiment 1 1 1 1

Coincident All employees: total nonfarm 1 1 1 2
Real personal income excluding current transfer receipts 1 1 1 1
Industrial production index 1 1 1 1
Manufacturing and trade sales 1 2 3 3

Lagging Average (mean) duration of unemployment 3 3 4 3
Inventory to sales ratio 1 1 1 2
Index of total labor cost per unit of output 2 2 3 2
Commercial and industrial loans at all commercial banks 1 1 1 1

Average time lag in months 1.27 1.67 1.93 2.00
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Conclusions
We made use of the RKHS methodology, according to which hierarchies of kernels are
generated via the multiplication of the biweight density function with corresponding
orthonormal polynomials.

Optimal bandwidth parameters have been selected to ensure optimal boundary kernels in
terms of reducing total revisions and fast detection of turning points as new observations
are added to the series.

We applied the new set of asymmetric filters to leading, coincident and lagging indicators
of the US economy.

The empirical results show that the bandwidth selected to minimize the distance between
the gain functions of the asymmetric and symmetry filters should be preferred since
they gave 50% reduction of total revisions relative to the Musgrave filter and smaller
time lag in detecting true turning points.
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Thank you for your time
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