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1. Introduction                                                                                                               
 

This chapter will attempt to place most methods used by statistical agencies to quality adjust 

prices into a common economic framework. The economic framework is based on purchasers 

maximizing a linearly homogeneous utility function subject to a budget constraint on their 

purchases of a group of related products. This framework is far from a perfect description of 

reality but it captures an important empirical phenomenon: when the price of a product drops a 

lot, purchasers of the product buy more of it! Moreover, the theory allows us to provide a welfare 

interpretation for the quantity indexes which are generated by this approach.  

 

The theory of quality adjustment to be presented in this paper is meant to be applied at the level 

where subindexes are constructed at the first stage of aggregation; i.e., at what is called the 

elementary level of aggregation by price statisticians. Furthermore, the methods for quality 

adjustment to be discussed in this chapter are largely aimed at the scanner data context; i.e., we 

will assume that the statistical agency has access to detailed price and quantity (or value) 

information at the product code level, either from retail outlets or from the detailed purchases of a 

group of similar households.2 Thus our focus will be on both the construction of consumer price 

indexes at the elementary level as well as on the companion consumer quantity indexes.  

 

The assumption of linearly homogeneous utility or valuation functions is an important restriction 

so one may ask: why impose it? The reason is that economic models constructed by private and 

public sector economists generally do not make use of disaggregated information; instead, they 

use the elementary indexes that are produced by national statistical agencies in their models. 

However, the price levels that correspond to these elementary indexes are treated as “normal” 

prices by applied economists; i.e., the elementary prices are not regarded as prices that are 

conditional on particular levels of the corresponding quantity levels. In order to construct 

unconditional price levels, we need to assume that the underlying aggregator or utility functions 

are linearly homogeneous.3 

 

Marshall (1887) was one of the first to introduce the new goods problem: how exactly should 

price indexes be adjusted to account for the introduction of new and hopefully improved 

products? 4 Marshall suggested that chaining period to period indexes would provide a partial 

solution to the problem. Keynes (1909) endorsed Marshall’s suggestion as a step in the right 

direction but noted that chaining alone will not solve the fundamental problem: increased product 

choice will generally increase the utility of purchasers of products but it is very difficult to 

measure this increase.5 This is the essence of the quality adjustment problem; how can statistical 

 
2 As cash transactions diminish in importance, credit and debit card companies will have detailed price and 

quantity information on household purchases. Once this information on consumer transactions also includes 

product bar codes, statistical agencies will eventually be able to access this information and use it to 

produce high quality consumer price indexes.   
3 The underlying index number theory using linearly homogeneous aggregator functions was developed by 

Shephard (1953), Samuelson and Swamy (1974) and Diewert (1976). This theory was explained in Chapter 

5 and will be summarized in section 2 below.  
4 “This brings us to consider the great problem of how to modify our unit so as to allow for the invention of 

new commodities. The difficulty is insuperable, if we compare two distant periods without access to the 

detailed statistics of intermediate times, but it can be got over fairly well by systematic statistics.” Alfred 

Marshall (1887; 373). Lehr (1885; 45-46) also introduced the chain system as a way of mitigating the new 

goods problem.  For more on the early history of the new goods problem, see Diewert (1993; 59-63).  
5 “The [chaining] method has another advantage. It enables us to introduce new commodities and to drop 

others which have fallen out of use. ... For most practical purposes, therefore, this is the method to be 

recommended. ... Yet we must not exaggerate its merits.” John M. Keynes (1909; 80). “We cannot hope to 
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agencies construct price and quantity indexes over two or more periods when there are new and 

disappearing products? 

 

Hicks (1940; 114) suggested a general approach to this measurement problem in the context of 

the economic approach to index number theory. His approach was to apply normal index number 

theory but estimate (somehow) hypothetical prices that would induce utility maximizing 

purchasers of a related group of products to demand 0 units of unavailable products.6 With these 

reservation or imputed prices in hand, one can just apply normal index number theory using the 

augmented price data and the observed quantity data (which impute zero quantities to unavailable 

products). This is the economic framework we will use in this chapter.7 The practical problem 

facing statistical agencies is: how exactly are these reservation prices to be estimated? 

 

The approach to the estimation of reservation prices that will be taken below is to use consumer 

demand theory to estimate preferences. Suppose that purchasers maximize a utility function f(q) 

subject to the budget constraint pq  n=1
N pnqn = v > 0 where the price and quantity of 

commodity n are pn and qn for n = 1,...,N. Define the price and quantity vectors p  [p1,...,pN] and 

q  [q1,...,qN]. Suppose that p, q and v are observed and q is a solution to the utility maximization 

problem max q {f(q) : pq = v}. Then given a functional form for f, the solution q to the utility 

maximization problem will satisfy the usual consumer demand functions, qn = dn(p,v) for n = 

1,...,N where dn(p,v) is the nth consumer demand function. Given price and quantity for many 

periods, the unknown parameters for the utility function that are imbedded in these consumer 

demand functions can be estimated using econometric methods. Duality theory can be used to 

simplify the derivation of the consumer demand functions. 8  This is the approach used by 

Hausman (1981) (1996) (1999) (2003) to estimate reservation prices. However, the econometrics 

of this method are complex. To illustrate these problems, suppose that in the first sample period, 

product 1 was not available. The observed demand for product 1 in period 1 is zero. Thus the first 

estimating equation in the sample would take the form 0 = d1(p1
1*,p2

1,...,pN
1,v1) + e1

1 where 

d1(p,v) is the demand function for commodity 1, p2
1,...,pN

1 are the observed prices for products 

2,3,...,N in period 1, v1 is the observed period 1 expenditure on the N products, e1
1 is an error term 

and p1
1* is the unknown period 1 reservation price for product 1. It can be seen that p1

1* is now an 

extra parameter that must be estimated. Hence the usual approach that conditions on prices (on 

the right hand sides of the estimating equations) and treats quantities as random variables on the 

left hand sides of the estimating equations does not apply due to the endogeneity of the 

reservation price. Moreover, the variable on the left hand side of the above equation is 0 and this 

is not a random variable. Thus simple econometric techniques cannot be used in this situation. 

 
find a ratio of equivalent substitution for gladiators against cinemas, or for the conveniences of being able 

to buy motor cars against the conveniences of being able to buy slaves.” John M. Keynes (1930; 96). 
6 “The same kind of device can be used in another difficult case, that in which new sorts of goods are 

introduced in the interval between the two situations we are comparing. If certain goods are available in the 

II situation which were not available in the I situation, the p1’s corresponding to these goods become 

indeterminate. The p2’s and q2’s are given by the data and the q1’s are zero. Nevertheless, although the p1’s 

cannot be determined from the data, since the goods are not sold in the I situation, it is apparent from the 

preceding argument what p1’s ought to be introduced in order to make the index-number tests hold. They 

are those prices which, in the I situation, would just make the demands for these commodities (from the 

whole community) equal to zero.” John R. Hicks (1940; 114). Von Hofsten (1952; 95-97) extended Hicks’ 

methodology to cover the case of disappearing goods as well.  
7 Two major problems with this framework are: (i) it does not take into account the fact that purchasers 

may stockpile goods on sale and this will affect demand in subsequent periods and (ii) the introduction of a 

new revolutionary product may change purchaser preferences over existing goods. However, until a better 

welfare oriented model of purchaser behavior comes along, we are stuck with using the Hicksian approach.  
8 See for example Diewert (1974; 120-133). 
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To deal with the above econometric problem, one can abandon the estimation of traditional 

consumer demand functions and switch to the estimation of the system of inverse consumer 

demand functions. The nth inverse demand function gives the observed price for product n, pn, as 

a function of the vector of quantities chosen by the purchasers, q, and total expenditure on the 

products v; i.e., we have pn = gn(q,v) for n = 1,...,N where gn is the nth inverse demand function.9 

Again suppose product 1 was not available in period 1. Then the first inverse demand function in 

period 1 becomes p1
1* = g1(0,q2

1,...,qN
1,v1) + e1

1 using the notation in the previous paragraph. 

Thus we simply drop this equation from the system of inverse demand estimating equations and 

use the remaining equations to estimate the unknown parameters in the direct utility function 

Q(q). Once these unknown parameters have been estimated, the period 1 reservation price for 

product 1 can be defined as p1
1* = g1(0,q2

1,...,qN
1,v1). This methodology will be described in 

sections 9 and 10 in more detail.10       

 

It turns out that a special case of this inverse demand function methodology is the case of a linear 

utility function; i.e., set f(q) = n=1
N nqn  q where the n are quality adjustment factors. Thus 

n gives the increase in utility of purchasers due to the acquisition of an extra unit of product n. 

The case of a linear utility function will be used as an underlying economic model in sections 3 

and 5-8. Furthermore, it turns out that the assumption of an underlying linear utility function 

provides a rationale for hedonic regression models, which will be studied in sections 5-8 below. 

 

In sections 3 and 4, we apply the linear utility function assumption to some special situations 

where it is possible to generate missing prices without using any econometrics. These sections 

introduce inflation adjusted carry forward and carry backward prices which have been used for 

many years by statistical agencies to replace missing prices.11 

 

In section 5, we also assume an underlying linear utility function but we no longer assume that 

the underlying economic model holds exactly. Thus error terms make their appearance in this 

section (and in subsequent sections). The resulting model is the time product dummy hedonic 

regression model. This model is an application of Summer’s (1973) country product dummy 

model to the time series context. The underlying time product dummy hedonic regression model 

is ptn = tn for n = 1,...,N and t = 1,...,T where the n are the quality adjustment factors that 

appear in the purchasers’ linear utility function and the t turn out to be period t aggregate price 

levels.12 However, in real life applications, these equations will not hold exactly and thus it is 

necessary to introduce error terms. The above exact equations can be replaced by lnptn = lnt + 

lnn + etn for n = 1,...,N and t = 1,...,T where the etn are error terms. This is a stochastic model 

which was discussed in Chapter 7. It is also a special case of a hedonic regression model where 

prices are regressed on the characteristics of products. In this simple framework, each product has 

its own separate characteristic. Estimators for the logarithms of t and n are found by 

 
9 Suppose that the utility function f(q) is differentiable and linearly homogeneous and we have an interior 

solution to the purchaser’s utility maximization problem. Then using Wold’s (1944; 69-71) identity, pn = 

[f(q)/qn]v/f(q)  gn(q,v) for n = 1,...,N. We will derive these equation in more detail in section 2 below. 

See also section 4 in Chapter 5.   
10 This methodology was first suggested by Diewert (1980; 498-503) and implemented by Diewert and 

Feenstra (2017). 
11 See von Hofsten (1952), Triplett (2004), de Haan and Krsinich (2012; 31-32) and Diewert, Fox and 

Schreyer (2017). Inflation adjusted carry forward and backward prices were discussed in section 19 of 

Chapter 7. 
12 A bilateral price index between period t relative to period r is defined as the ratio of the relevant price 

levels, t/r.  
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minimizing the sum of squared errors, t=1
T n=1

N [etn]2 = t=1
T n=1

N [lnptn − lnt + lnn]2. 

However, the log prices are not weighted according to their economic importance and the model 

does not allow for missing products as was seen in Chapter 7. Finally, in section 17 of Chapter 7, 

we found a satisfactory stochastic model that allowed for missing observations and weighted 

prices by their economic importance. This model is reviewed in section 5 of the present chapter.  

 

The model described in section 5 generates price levels that have some good axiomatic properties 

but the model has an important drawback: a product that is available only in one period out of the 

T periods has no influence on the estimated aggregate price levels t
* for all periods. Thus the 

introduction of a new product in period T will have no effect on the estimated price level for 

period T, T
*. This goes against the spirit of the Hicksian approach to the treatment of new goods. 

The hedonic regression models considered in sections 6 and 7 do not suffer from this drawback. 

 

Sections 6 and 7 deal with hedonic regression models that make use of information on the 

characteristics of the N products under consideration. The models in these two sections are more 

satisfactory than the weighted time product dummy model discussed in section 5 because now 

isolated prices play a role in the determination of the estimated price levels t
* for t = 1,...,T. 

However, the hedonic regression models considered in sections 6 and 7 do require information on 

product characteristics, information which may be difficult to collect. The important results 

obtained by de Haan and Krsinich (2018) using this class of hedonic regression models applied to 

electronic products are discussed in section 7. They compare weighted and unweighted versions 

of the same hedonic regression models and show that weighting leads to improved results. 

 

The problems raised by taste change in the two period case are addressed in section 8. The 

treatment of the problem in this section is due to Diewert, Heravi and Silver (2009) and it uses the 

tastes of each period to construct separate bilateral price indexes between the two periods. The 

two indexes, each of which hold tastes constant, are then averaged to form a final index. 

 

Finally, in sections 9 and 10, two alternative methods for constructing reservation prices are 

discussed. In these methods, the underlying utility function is not assumed to be a linear function. 

In section 9, the reservation price model due to Feenstra (1994) is presented. This model assumes 

that the underlying preferences are CES (Constant Elasticity of Substitution). 13  The model 

presented in section 10 assumes that the underlying preferences are a certain flexible functional 

form (that is exact for the Fisher (1922) ideal quantity index). This model is due to Diewert and 

Feenstra (2017).  

 

Section 11 offers some conclusions.    

 

2. A Framework for Evaluating Quality Change In the Scanner Data Context 

 

In this section, we provide a framework for the construction of consumer price and quantity 

indexes in the scanner data context using the economic approach to index number theory. We 

assume that transactions data for the sales or purchases of N products over T time periods are 

available.14 The N products will typically be a group of related products so that the goal is the 

construction of price and quantity indexes at the first stage of aggregation. The transactions data 

 
13 See Arrow, Chenery, Minhas and Solow (1961) for the first use of this functional form in the economics 

literature. Chapter 5 considered alternative estimation methods for this functional form. 
14 The data could be price and quantity (or value and quantity) on sales of the N products from a retail 

outlet (or group of outlets in the same region) or it could be price and quantity data for the purchases of the 

N products by a group of similar households.  
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are aggregated over time within each period so that the prices for each period are unit value 

prices. Let pt  [pt1,...,ptN] and qt  [qt1,...,qtN] denote the price and quantity vectors for time 

periods t = 1,...,T. The period t quantity for product n, qtn, is equal to total purchases of product n 

by purchasers or it is equal to the sales of product n by the outlet (or group of outlets) for period t, 

while the corresponding period t price for product n, ptn, is equal to the value of sales (or 

purchases) of product n in period t, vtn, divided by the corresponding total quantity sold (or 

purchased), qtn. Thus ptn  vtn/qtn is the unit value price for product n in period t for t = 1,...,T and 

n = 1,...,N. In this section, we assume that all prices, quantities and values are positive; in 

subsequent sections, this assumption will be relaxed.   

 

Let q  [q1,...,qN] be a generic quantity vector. In order to compare various methods for 

comparing the value of alternative combinations of the N products, it is necessary that a valuation 

function or aggregator function or utility function f(q) exist. This function allows us to value 

alternative combinations of products; if f(q2) > f(q1), then purchasers of the products place a 

higher utility value on the vector of purchases q2 than they place on the vector of purchases q1. 

The function f(q) can also act as an aggregate quantity level for the vector of purchases, q. Thus 

f(qt) can be interpreted as an aggregate quantity level for the period t vector of purchases, qt, and 

the ratios, f(qt)/f(q1), t = 1,..,T, can be interpreted as fixed base quantity indexes covering periods 

1 to T.   

 

In the following analysis, we assume that f(q) has the following properties: (i) f(q) > 0 if q >> 

0N;15 (ii) f(q) is nondecreasing in its components; (iii) f(q) = f(q) for q  0N and   0; (iv) f(q) 

is a continuous concave function over the nonnegative orthant. Assumption (iii), linear 

homogeneity of f(q), is a somewhat restrictive assumption. However, this assumption is required 

to ensure that the aggregate price level, P(p,q), that corresponds to f(q) does not depend on the 

scale of q.16 Property (iv) will ensure that the first order necessary conditions for the budget 

constrained maximization of f(q) are also sufficient.      

 

Let p [p1,...,pN] > 0N and q [q1,...,qN]  > 0N with pq  n=1
N pnqn > 0. Then the aggregate price 

level, P(p,q) that corresponds to the aggregate quantity level f(q) is defined as follows: 

 

(1) P(p,q)  pq/f(q). 

 

Thus the implicit price level P(p,q), which is generated by the generic price and quantity vectors, 

p and q, is equal to the value of purchases, pq, deflated by the aggregate quantity level, f(q). Note 

that using these definitions, the product of the aggregate price and quantity levels equals the value 

of purchases during the period; i.e., we have P(p,q)f(q) = pq. 

 

Once the functional form for the aggregator function f(q) is known, then the aggregate quantity 

level for period t, Qt, can be calculated in the obvious manner: 

 

(2) Qt  f(qt);                                                                                                                        t = 1,...,T.  

 

Using definition (1), the corresponding period t aggregate price level, Pt, can be calculated as 

follows: 

 
15 Notation: q >> 0N means each component of q is positive, q  0N means each component of q is 

nonnegative and q > 0N means q  0N but q  0N, 
16 P(p,q)  pq/f(q) where pq  n=1

N pnqn. Thus using property (iii) of f(q), we have P(p,q) = pq/f(q) = 

pq/f(q) = P(p,q).    
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(3) Pt  ptqt/f(qt);                                                                                                                 t = 1,...,T.                                                                                                         

 

Note that if f(q) turns out to be a linear aggregator function, so that f(qt)  qt = n=1
N nqtn, then 

the corresponding period t price level Pt is equal to ptqt/qt, which is a quality adjusted unit 

value price level.17  

 

In order to make further progress, it is necessary to make some additional assumptions. The two 

additional assumptions are: (v) f(q) is once differentiable with respect to the components of q and 

(vi) the observed strictly positive quantity vector for period t, qt >> 0N,18 is a solution to the 

following period t constrained maximization problem: 19 

 

(4) max q {f(q) : ptq = vt ; q  0N};                                                                                     t = 1,...,T. 

 

The first order conditions for solving (4) for period t are the following conditions:20 

 

(5) qf(qt) = tpt ;                                                                                                                t = 1,...,T; 

(6)   ptqt   = vt ;                                                                                                                    t = 1,...,T. 

 

Since f(q) is assumed to be linearly homogeneous with respect to q, Euler’s Theorem on 

homogeneous functions implies that the following equations hold: 

 

(7) qtqf(qt) = f(qt) ;                                                                                                            t = 1,...,T. 

 

Take the inner product of both sides of equations (5) with qt and use the resulting equations along 

with equations (7) to solve for the Lagrange multipliers, t: 

 

(8) t = f(qt)/ptqt                                                                                                t = 1,...,T 

          =1/Pt                                                                                                         using definitions (3). 

 

Thus if we assume utility maximizing behavior on the part of purchasers of the N products using 

the collective utility function f(q) that satisfies the above regularity conditions, then the period t 

quantity aggregate is Qt  f(qt) and the companion period t price level defined as Pt  ptqt/Qt is 

equal to 1/t where t is the Lagrange multiplier for problem t in the constrained utility 

maximization problems (4) and where qt and t solve equations (5) and (6) for period t. Equations 

(8) also imply that the product of Pt and Qt is exactly equal to observed period t expenditure vt; 

i.e., we have 

 

(9) PtQt = ptqt = vt ;                                                                                                             t = 1,...,T. 

 
17 See section 10 of Chapter 7 for the properties of quality adjusted unit value indexes. 
18 The assumption that qt >> 0N can be replaced by the assumptions qt > 0N and ptqt > 0. 
19 The theory that follows dates back to Konüs and Byushgens (1926). This approach blends standard 

consumer demand theory based on the maximization of a linearly homogeneous utility function with index 

number theory. It was further developed by Shephard (1953) (in the context of a producer cost 

minimization framework) and by Samuelson and Swamy (1974) and Diewert (1976) in the consumer 

context. The price indexes which result from this theory are special cases of the Konüs (1924) true cost of 

living index. What is new in the present chapter is the application of this theory to hedonic regression 

models. 
20 Using the assumption of concavity of f(q) and the assumption that qt >> 0N, these conditions are also 

sufficient to solve (4). Notation: qf(q)  [f(q)/q1,..., f(q)/qN]. 
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Substitute equations (8) into equations (5) and after a bit of rearrangement, the following 

fundamental equations are obtained:21 

 

(10) pt = Ptqf(qt) ;                                                                                                              t = 1,...,T.  

 

In the following section, we will assume that the aggregator function, f(q), is a linear function and 

we will show how this assumption along with equations (9) for the case where T = 2 and N = 3 

can lead to a simple well known method for quality adjustment that does not involve any 

econometric estimation of the parameters of the linear function. In subsequent sections, equations 

(10) will be utilized in the hedonic regression context. In the final sections of the chapter, the 

assumption that f(q) is a linear function will be relaxed. 

 

3. A Nonstochastic Method for Quality Adjustment: A Simple Model 

 

A major problem that arises when statistical agencies use scanner data to construct an elementary 

index is that some products are sold or purchased in one period but not in a subsequent period. 

Conversely, new products appear in the present period which were not present in previous 

periods. How should price and quantity indexes be constructed under these circumstances? 

Equations (10) in the previous section can be used to provide an answer to this question. 

 

Consider the special case where the number of periods T is equal to 2 and the number of products 

in scope for the elementary index is N equal to 3. Product 1 is present in both periods, product 2 

is present in period 1 but not in period 2 (a disappearing product) and product 3 is not present in 

period 1 but is present in period 3 (a new product).22 We assume that purchasers of the three 

products behave as if they collectively maximized the following linear aggregator function: 

 

(11) f(q1,q2,q3)  1q1 + 2q2 + 3q3 

 

where the n are positive constants. Under these assumptions, equations (10) written out in scalar 

form become the following equations:23 

 

(12) ptn = Pt n ;                                                                                                       n = 1,2,3; t = 1,2. 

 

 Equations (12) are 6 equations in the 5 parameters P1 and P2 (which can be interpreted as 

aggregate price levels for periods 1 and 2) and 1, 2 and 3, which can be interpreted as quality 

 
21 Multiply the right hand side of equation t in (10) by 1 = Qt/f(qt) and use PtQt = vt to obtain the following 

system of equations: pt = vtqf(qt)/f(qt) for t = 1,...,T. For each t, this system of equations is the consumer’s 

system of inverse demand functions, that give the period t prices that are consistent with the observed 

period t demands qt as functions of pt and period t expenditure vt. Konüs and Byushgens (1926) obtained a 

system of equations that is equivalent to this system of inverse demand functions. Linear homogeneity of 

the utility function is required in order to obtain these equations and the equivalent equations defined by (9) 

and (10).  
22 The “new” product may not be a truly new product; it may be the case that product 3 was temporarily not 

available in period 1. Similarly, product 2 may not permanently disappear in period 2; it may reappear in a 

subsequent period.  
23 This is a special case of the Time Product Dummy regression model which was studied in Chapter 7 and 

will be summarized in section 5 below. Thus equations (12), which are the inverse consumer demand 

functions that result from the maximization of a linear utility function, lead directly to a particular hedonic 

regression model. It is this result which allows us to claim that our present approach is a way of reconciling 

hedonic regression models with classical consumer demand theory.   
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adjustment factors for the 3 products; i.e., each n measures the relative usefulness of an 

additional unit of product n to purchasers of the 3 products. However, product 3 is not observed 

in the marketplace during period 1 and product 2 is not observed in the marketplace in period 2 

and so there are only 4 equations in (12) to determine 5 parameters. However, the Pt and the n 

cannot all be identified using observable data; i.e., if P1, P2, 1, 2 and 3 satisfy equations (12) 

and  is any positive number, then P1, P2, −11, −12 and −13 will also satisfy equations 

(12). Thus it is necessary to place a normalization (like P1 = 1 or 1 = 1) on the 5 parameters 

which appear in equations (12) in order to obtain a unique solution. In the index number context, 

it is natural to set the price level for period 1 equal to unity and so we impose the following 

normalization on the 5 unknown parameters which appear in equations (12): 

 

(13) P1 = 1. 

 

The 4 equations in (12) which involve observed prices and the single equation (13) are 5 

equations in 5 unknowns. The unique solution to these equations is: 

 

(14) P1 = 1; P2 = p21/p11; 1 = p11; 2 = p12; 3 = p23/(p21/p11) = p23/P2. 

 

Note that the resulting price index, P2/P1, is equal to p21/p11, the price ratio for the commodity that 

is present in both periods. Thus the price index for this very simple model turns out to be a 

maximum overlap price index.24                 

 

Once the Pt and n have been determined, equations (12) for the missing products can be used to 

define the following imputed prices ptn
* for commodity 3 in period 1 and product 2 in period 2: 

 

(15) p13
*  P13 = p23/(P2/P1) ; p22

*  P22 = (p21/p11)p12 = (P2/P1)p12. 

 

These imputed prices can be interpreted as Hicksian (1940; 12) reservation prices;25 i.e., they are 

the lowest possible prices that would deter purchasers from purchasing the products during 

periods if the unavailable products hypothetically became available.26 

 

Note that p13
* = p23/(P2/P1) is an inflation adjusted carry backward price; i.e., the observed price 

for product 3 in period 2, p23, is divided by the maximum overlap price index P2/P1 in order to 

obtain a “reasonable” valuation for a unit of product 3 in period 1. Similarly, p22
* = (P2/P1)p12 is 

an inflation adjusted carry forward price for product 2 in period 2; i.e., the observed price for 

product 2 in period 1, p12, is multiplied by the maximum overlap price index P2/P1 in order to 

obtain a “reasonable” valuation for a unit of product 2 in period 2.27    

 

 
24 Keynes (1930; 94) was an early author who advocated this method for dealing with new goods by 

restricting attention to the goods that were present in both periods being compared. He called his suggested 

method the highest common factor method. Marshall (1887; 373) implicitly endorsed this method. Triplett 

(2004; 18) called it the overlapping link method. 
25 Hicks (1940 dealt only with the case of new goods; von Hofsten (1952; 95-97) extended his approach to 

cover the case of disappearing goods as well. 
26 Strictly speaking, it would be necessary to add a tiny amount to these prices to deter consumers from 

purchasing these products if they were made available.  
27 The use of carry forward and backward prices to estimate missing prices is widespread in statistical 

agencies. For additional materials on this method for estimating missing prices, see Triplett (2004), de 

Haan and Krsinich (2012), Diewert, Fox and Schreyer (2017) and section 19 of Chapter 7.  
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Note that the above algebra can be implemented without a knowledge of quantities sold or 

purchased. Assuming that quantity information is available, we now consider how companion 

quantity levels, Q1 and Q2, for the price levels, P1 and P2, can be determined. Note that q13 = 0 and 

q22 = 0 since consumers cannot purchase products that are not available. Use the imputed prices 

defined by (15) to obtain complete price vectors for each period; i.e., define the period 1 complete 

price vector by p1  [p11, p12, p13
*] and the complete period 2 price vector by p2  [p21, p22

*, p23]. 

The corresponding complete quantity vectors are q1  [q11, q12, 0] and q2  [q21, 0, q23]. The period 

t aggregate quantity level Qt can be calculated directly using only information on qt and the vector 

of quality adjustment factors,   [1, 2, 3], or indirectly by deflating period t expenditure vt  

ptqt by the estimated period t price level, Pt. Thus we have the following two possible methods 

for constructing the Qt: 

 

(16) Qt  qt ; or Qt  ptqt/Pt ;                                                                                                t = 1,2.    

 

However, using the complete price vectors pt with imputed prices filling in for the missing prices, 

equations (12) hold exactly and thus it is straightforward to show that Qt = qt = ptqt/Pt for t = 

1,2. Thus it does not matter whether we use the direct or indirect method for calculating the 

quantity levels; both methods give the same answer in this simple model.28 

 

A problem with this simple model is that there is only one product that is present in both periods. 

In the following section, we generalize the present model to allow for multiple overlapping 

products. 

 

4. A Nonstochastic Method for Quality Adjustment: A More Complex Model 

 

In order to generalize the very simple model for dealing with new and disappearing products that 

was presented in the previous section, it is first necessary to develop another application of the 

fundamental equations (10) in section 2.  

 

Define the aggregator function f(q) as follows: 

 

(17) fKBF(q*)  [q*Aq*]1/2  [i=1
N j=1

N aijqi
*qj

*]1/2 

 

where q* is defined as the N dimensional quantity vector [q1
*,...,qN

*] and A  [aij] is an N by N 

symmetric matrix of parameters which satisfies certain regularity conditions.29 Suppose further 

that the observed price and quantity vectors for periods 1 and 2 are the positive price and quantity 

vectors, pt*  [pt1
*,...,ptN

*] and qt*  [qt1
*,...,qtN

*] for t = 1,2. We assume that qt* solves max q 

{fKBF(q) : pt*q = vt* ; q  0N} for t = 1,2 where vt*  pt*qt* is the observed expenditure on the N 

products for periods t = 1,2. The inverse demand functions (10) that correspond to this particular 

aggregator function are the following ones: 

 

(18) pt* = Pt*qfKBF(qt*) = Pt [qt*Aqt*]−1/2 Aqt* ;                                                                       t = 1,2. 

 

 
28 In subsequent sections when we no longer assume that equations (12) hold exactly, then the direct and 

indirect methods for calculating the Qt will in general differ. 
29 Thus A = AT and A is assumed to have one positive eigenvalue with a corresponding strictly positive 

eigenvector and N−1 negative or zero eigenvalues. This functional form was introduced into the economics 

literature by Konüs and Byushgens (1926), who showed its connection to the Fisher (1922) ideal index. 

This explains why f(q*) is labeled as fKBF(q*). For further discussion of the regularity conditions on fKBF(q*), 

see Diewert (1976) and Diewert and Hill (2010) or section 5 of Chapter 5.    
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Using the framework described in section 2 above, the period t aggregate quantity level for the 

present model is Qt*  [qt*Aqt*]1/2 and the corresponding period t price level is Pt*  pt*qt*/Qt* for 

t = 1,2. The Fisher (1922) ideal quantity index is a function of the observable price and quantity 

data and is defined as follows:; 

 

(19) QF(p1*,p2*,q1*,q2*)   [p1*q2* p2*q2*/p1*q1* p2*q1*]1/2. 

 

Use equations (18) to eliminate p1* and p2* from the right hand side of (19). We find that 

 

(20) (p1*q2*p2*q2*)/(p1*q1*p2*q1*) = q2*Aq2*/q1*Aq1*. 

 

Take positive square roots on both sides of (20). Using definitions (17) and (19), the resulting 

equation is: 

 

(21) fKBF(q2*)/fKBF(q1*) = QF(p1*,p2*,q1*,q2*).   

 

Thus Q2*/Q1* = fKBF(q2*)/fKBF(q1*) is equal to the Fisher ideal quantity index QF(p1*,p2*,q1*,q2*), 

which can be calculated using observable price and quantity data for the two periods. We know 

from section 2 that 

 

(22) Pt*Qt* = pt*qt* ;                                                                                                     t = 1,2.  

 

Now make the normalization P1* = 1. Using this normalization and equations (21) and (22), the 

aggregate price and quantity levels for the two periods can be defined in terms of observable data 

as follows: 

 

(23) P1*  1; Q1*  p1*q1*; Q2*  Q1*QF(p1*,p2*,q1*,q2*); P2*  p1*q1*/Q2*. 

 

The above results can be combined with the 3 product model that was described in the previous 

section: relabel the above aggregate data as a composite product 1 so that the new product 1 that 

corresponds to the first product in section 3 has prices and quantities defined as pt1  Pt* and qt1  

Qt* for t = 1,2. Products 2 and 3 are a disappearing product and a new product respectively as in 

section 3 above. The aggregate price levels for the two periods (which use all N+2 products) are 

P1 and P2 and the new n parameters are defined by the following counterparts to equations (14) 

above: 

 

(24) P1 = 1; P2 = P2*/P1* = PF(p1*,p2*,q1*,q2*); 1 = 1; 2 = p12; 3 = p23/(P2*/P1*) 

    

where P2*/P1*  [v2*/v1*]/[Q2*/Q1*]  PF(p1*,p2*,q1*,q2*) is the Fisher (1922) ideal price index that 

compares the prices of the N products that are present in both periods, p1*, p2*, for the two periods 

under consideration. The imputed prices for the missing products, p13
* and p22

*, are obtained by 

using equations (15) for our present model: 

 

(25) p13
*  p23/PF(p1*,p2*,q1*,q2*) ; p22

*  PF(p1*,p2*,q1*,q2*)p12. 

 

Comparing (24) and (25) with the corresponding equations (14) and (15) for the 3 product model, 

it can be seen that the price ratio for product 1 that was present in both periods, p21/p11, is replaced 

by the Fisher index PF(p1*,p2*,q1*,q2*) which is now defined over the set of products that are 

present in both periods. The type of inflation adjusted carry backward price p13
* and the inflation 

adjusted carry forward price p22
* defined by (25) are widely used by statistical agencies to 
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estimate missing prices but agencies usually use either the Lowe, Laspeyres or Paasche index in 

place of the Fisher price index.30  

 

The aggregator function that is consistent with the new model with N continuing products, one 

disappearing product and one new product is defined as follows: 

 

(26) Q(q1
*,...,qN

*,q2,q3)  1fKBF(q*) + 2q2 + 3q3 

 

where fKBF(q*) is the KBF aggregator function defined by (17) and 1 is set equal to 1.31 Note that 

the model defined by (26) is restrictive from the economic perspective because the additive nature 

of definition (26) implies that the composite first commodity is perfectly substitutable with the 

new and disappearing commodities (which are also perfect substitutes for each other after quality 

adjustment). However, if the products under consideration are highly substitutable for each other, 

the implicit assumption of perfect substitutes for missing products will be acceptable. Moreover, 

the advantage of this form of quality adjustment is that it is relatively easy to explain to the public 

and it is fairly straightforward to implement.     

 

The restriction that there is only one new product and one disappearing product is readily relaxed. 

The overall price index will continue to be PF(p1*,p2*,q1*,q2*) and counterparts to equations (25) 

can be used to generate imputed prices for the missing products.  

 

We turn now to applications of the basic framework explained in section 2 where conditions (10) 

only hold approximately rather than exactly. 

 

5. Weighted Time Product Dummy Regressions 

 

In this section, we consider a special case of the model of economic behavior explained in section 

2 above where there are N products in the aggregate and T periods. Let pt  [pt1,...,ptN] and qt  

[qt1,...,qtN] denote the price and quantity vectors for time periods t = 1,...,T. Initially, it is assumed 

that there are no missing prices or quantities so that all NT prices and quantities are positive. We 

assume that the quantity aggregator function f(q) is the following linear function: 

 

(27) f(q) = f(q1,q2,...,qN)  n=1
N nqn = q 

 

where the n are positive parameters, which can be interpreted as quality adjustment factors. 

Under the assumption of maximizing behavior on the part of purchasers of the N commodities, 

assumption (27) applied to equations (10) implies that the following NT equations should hold 

exactly: 

 

(28) ptn = tn ;                                                                                                  n = 1,...,N; t = 1,...,T 

 

where we have redefined the period t price levels Pt in equations (10) as the parameters t for t = 

1,...,T.  

 

 
30 Note that the aggregate price index that is generated by this model is PF(p1*,p2*,q1*,q2*) which does not 

use the unmatched prices for the two periods. 
31 It is not necessary to use the KBF aggregator function in the above model; any aggregator function that 

has an exact index number associated with it will work. See Diewert (1976) for examples of exact index 

number formulae.  
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Note that equations (28) form the basis for the time dummy hedonic regression model which is 

due to Court (1939).32 It can be seen that these equations are a special case of the general model 

of consumer behavior that was explained in section 2 above.  

 

At this point, it is necessary to point out that our consumer theory derivation of equations (28) is 

not accepted by all economists. Rosen (1974), Triplett (1987) (2004) and Pakes (2001)33 have 

argued for a more general approach to the derivation of hedonic regression models that is based 

on supply conditions as well as on demand conditions. The present approach is obviously based 

on only consumer preferences. This consumer oriented approach was endorsed by Griliches 

(1971; 14-15), Muellbauer (1974; 988) and Diewert (2003a) (2003b).34 Of course, the separability 

assumptions which justify the present consumer approach are quite restrictive but, nevertheless, it 

is useful to imbed hedonic regression models in a traditional consumer demand setting.     

 

Empirically, equations (28) are unlikely to hold exactly. Thus following Court (1939), we assume 

that the exact model defined by (28) holds only to some degree of approximation and so we could 

add error terms etn to the right hand sides of equations (28). The unknown parameters,   

[1,...,T] and   [1,...,N], could be estimated as solutions to the following (nonlinear) least 

squares minimization problem: 

 

(29) min ,  n=1
N t=1

T [ptn −tn]2 . 

 

However, in section 13 of Chapter 7, we showed that the estimated price levels t
* that solve the 

minimization problem (29) had unsatisfactory axiomatic properties. Thus we took logarithms of 

both sides of the exact equations (28) and added error terms to the resulting equations. This led to 

the following least squares minimization problem:35 

 

 
32  This was Court’s (1939; 109-111) hedonic suggestion number two. He transformed the underlying 

equations (28) by taking logarithms of both sides of these equations (which will be done below). He chose 

to transform the prices by the log transformation because the resulting regression model fit his data on 

automobiles better. Diewert (2003b) also recommended the log transformation on the grounds that 

multiplicative errors were more plausible than additive errors. 
33 “The derivatives of a hedonic price function should not be interpreted as either willingness to pay 

derivatives or cost derivatives; rather they are formed from a complex equilibrium process.” Ariel Pakes 

(2001; 14). 
34 Diewert (2003b; 97) justified the consumer demand approach as follows: “After all, the purpose of the 

hedonic exercise is to find how demanders (and not suppliers) of the product value alternative models in a 

given period. Thus for the present purpose, it is the preferences of consumers that should be decisive, and 

not the technology and market power of producers. The situation is similar to ordinary general equilibrium 

theory where an equilibrium price and quantity for each commodity is determined by the interaction of 

consumer preferences and producer’s technology sets and market power. However, there is a big branch of 

applied econometrics that ignores this complex interaction and simply uses information on the prices that 

consumers face, the quantities that they demand and perhaps demographic information in order to estimate 

systems of consumer demand functions. Then these estimated demand functions are used to form estimates 

of consumer utility functions and these functions are often used in applied welfare economics. What 

producers are doing is entirely irrelevant to these exercises in applied econometrics with the exception of 

the prices that they are offering to sell at. In other words, we do not need information on producer marginal 

costs and markups in order to estimate consumer preferences: all we need are selling prices.” Footnote 25 

on page 82 of Diewert (2003b) explains how the present hedonic model can be derived from Diewert’s 

(2003a) consumer based model by strengthening the assumptions in the 2003a paper. 
35 This model is an adaptation of Summer’s (1973) country product dummy model to the time series 

context. See Aizcorbe, Corrado and Doms (2000) for an early application of this model in the time series 

context. 
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(30) min ,  n=1
N t =1

T [lnptn − t − n]2 

 

where the new parameters t and n were defined as the logarithms of the t and n; i.e., define : 

 

(31) t  lnt ;                                                                                                                     t = 1,...,T; 

(32) n  lnn ;                                                                                                                   n = 1,...,N. 

  

However, the least squares minimization problem defined by (30) does not weight the log price 

terms [lnptn − t − n]2 by their economic importance and so in section 15 of Chapter 7, we 

considered the following weighted least squares minimization problem:36 

(33) min ,  n=1
N t =1

T stn[lnptn − t − n]2 

where stn is the expenditure share of product n in period t. The first order necessary conditions for 

*  [1
*,...,T

*] and *  [1
*,...,N

*] to solve (33) simplify to the following T equations (34) and 

N equations (35): 

(34) t
* = n=1

N stn[lnptn − n
*] ;                                                                                          t = 1,...,T; 

(35) n
* = t=1

T stn[lnptn − t
*]/(t=1

T stn) ;                                                                           n = 1,...,N. 

The solution to (34) and (35) is not unique: if *  [1
*,...,T

*] and *  [1
*,...,N

*] solve (34) and 

(35), then so do [1
*+,...,T

*+] and [1
*−,...,N

*−] for all . Thus we can set 1
* = 0 in 

equations (35) and drop the first equation in (34) and use linear algebra to find a unique solution 

for the resulting equations.37 Once the solution is found, define the estimated price levels t
* and 

quality adjustment factors n
* as follows: 

(36) t
*  exp[t

*] ; t = 1,...,T; n
*  exp[n

*] ; n = 1,...,N.   

The price levels t
* defined by (36) are called the Weighted Time Product Dummy price levels.  

Note that the resulting price index between periods t and  is equal to the following expression: 

(37) t
*/* =  n=1

N exp[stnln(ptn/n
*)]/n=1

N exp[snln(pn/n
*)] ;                                   1  t,   T. 

If stn = sn for n = 1,...,N, then t
*/* will equal a weighted geometric mean of the price ratios 

ptn/pn where the weight for ptn/pn is the common expenditure share stn = sn. Thus t
*/* will not 

depend on the n
* in this case. 

 

Once the estimates for the t and n have been computed, we have two methods for constructing 

period by period price and quantity levels, Pt and Qt for t = 1,...,T. The t
* estimates can be used 

 
36 Rao (1995) (2004) (2005; 574) was the first to consider this model using expenditure share weights; see 

also Diewert (2004). However, Balk (1980; 70) suggested this class of models much earlier using 

somewhat different weights. For the case of 2 periods, see Diewert (2004) (2005a) and de Haan (2004a). 
37 Alternatively, one can set up the linear regression model defined by (stn)1/2lnptn = (stn)1/2t + (stn)1/2n + etn 

for t = 1,...,T and n = 1,...,N where we set 1 = 0 to avoid exact multicollinearity. Iterating between 

equations (34) and (35) will also generate a solution to these equations and the solution can be normalized 

so that 1 = 0.  
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to form the aggregates using equations (38) or the n
* estimates can be used to form the 

aggregates using equations (39):38 

 

(38)  Pt*   t
* ;    Qt*   ptqt/t

* ;                                                                                        t = 1,...,T; 

(39) Qt**  *qt ; Pt**  ptqt/*qt ;                                                                                     t =1,...,T. 

 

Define the error terms etn  lnptn − lnt
* − lnn

* for t = 1,...,T and n = 1,...,N. If all etn = 0, then Pt* 

will equal Pt** and Qt* will equal Qt** for t = 1,...,T. However, if the error terms are not all equal to 

zero, then the statistical agency will have to decide on pragmatic grounds which option to use to 

form period t price and quantity levels, (38) or (39).39 

 

It is straightforward to generalize the weighted least squares minimization problem (33) to the 

case where there are missing prices and quantities. As in section 17 of Chapter 7, we assume that 

there are N products and T time periods but not all products are purchased (or sold) in all time 

periods. For each period t, define the set of products n that are present in period t as S(t)  {n: ptn 

> 0} for t = 1,2,...,T. It is assumed that these sets are not empty; i.e., at least one product is 

purchased in each period. For each product n, define the set of periods t where product n is 

present as S*(n)  {t: ptn > 0}. Again, assume that these sets are not empty; i.e., each product is 

sold in at least one time period. The generalization of (33) to the case of missing products is the 

following weighted least squares minimization problem: 

 

(40) min , t=1
T nS(t) stn[lnptn − t − n]2 = min , n=1

N tS*(n) stn[lnptn − t − n]2. 

 

Note that there are two equivalent ways of writing the least squares minimization problem; the 

first way uses the definition for the set of products n present in period t, S(t), while the second 

way uses the definition for the set of periods t where product n is present, S*(n). The first order 

necessary conditions for 1,...,T and 1,...,N to solve (40) are the following counterparts to (34) 

and (35): 

 

(41) nS(t) stn[t
* + n

*] = nS(t) stnlnptn ;                                                                           t = 1,...,T; 

(42) tS*(n) stn[t
* + n

*] = tS*(n) stnlnptn ;                                                                        n = 1,...,N. 

 

As usual, the solution to (41) and (42) is not unique: if *  [1
*,...,T

*] and *  [1
*,...,N

*] solve 

(41) and (42), then so do [1
*+,...,T

*+] and [1
*−,...,N

*−] for all . Thus we can set 1
* = 0 

in equations (42), drop the first equation in (41) and use linear algebra to find a unique solution 

for the resulting equations.40 

 

Define the estimated price levels t
* and quality adjustment factors n

* by definitions (31) and 

(32). Substitute these definitions into equations (41) and (42). After some rearrangement, 

equations (41) and (42) become the following ones: 

 

 
38 Note that the price level Pt** defined in (39) is a quality adjusted unit value index of the type studied by 

de Haan (2004b).  
39 In section 21 of Chapter 7, the following multilateral test was considered: Test 2: The fixed basket test for 

prices or the strong identity test for quantities: If qr = qt  q, then the price index for period t relative to 

period r is pM
t(P,Q)/pM

r(P,Q) = ptq/prq. If the price and quantity aggregates are formed using equations 

(39) rather than (38), then this Test will be satisfied. However, the more usual approach is to define the 

period t price and quantity aggregates using equations (38). If this is done, then in general, the Weighted 

Time Product Dummy price level functions, pWTPD
t(P,Q), will not satisfy the basket test, Test 2. 

40 The resulting system of T − 1 + N equations needs to be of full rank in order to obtain a unique solution. 
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(43) t
*  = exp[nS(t) stnln(ptn/n

*)] ;                                                                                   t = 1,...,T; 

(44) n
* = exp[tS*(n) stnln(ptn/t

*)/tS*(n) stn] ;                                                                  n = 1,...,N. 

  

Once the estimates for the t and n have been computed, we have the usual two methods for 

constructing period by period price and quantity levels, Pt and Qt for t = 1,...,T. The counterparts 

to definitions (38) are the following definitions: 

 

(45) Pt*  t
* = exp[nS(t) stnln(ptn/n

*)]  ;                                                                           t = 1,...,T; 

(46) Qt*  nS(t) ptnqtn/Pt* ;                                                                                                   t = 1,...,T. 

  

Thus Pt* is a weighted geometric mean of the quality adjusted prices ptn/n
* that are present in 

period t where the weight for ptn/n
* is the corresponding period t expenditure (or sales) share for 

product n in period t, stn. The counterparts to definitions (39) are the following definitions : 

 

(47) Qt**  nS(t) n
*qtn ;                                                                                                     t = 1,...,T; 

(48) Pt**  nS(t) ptnqtn/Qt**                                                                                                  t = 1,...,T; 

              = nS(t) ptnqtn/nS(t) n
*qtn                                                                                     using (47) 

              = nS(t) ptnqtn/nS(t) n
*(ptn)−1ptnqtn  

              = [nS(t) stn(ptn/n
*)−1]−1  

               exp[nS(t) stnln(ptn/n
*)]  

              = Pt* 

 

where the inequality follows from Schlömilch’s inequality41; i.e., a weighted harmonic mean of 

the quality adjusted prices ptn/n
* that are present in period t, Pt**, will always be less than or equal 

to the corresponding weighted geometric mean of the prices where both averages use the same 

share weights stn when forming the two weighted averages. The inequalities Pt**   Pt* imply the 

inequalities Qt**  Qt* for t = 1,...,T. This algebra is due to de Haan (2004b) (2010) and de Haan 

and Krsinich (2018; 763). The model used by de Haan and Krsinich is a more general hedonic 

regression model which includes the time dummy model used in the present section as a special 

case. Thus their algebra can be applied to all of the subsequent hedonic regression models in the 

following two sections that use time dummies, share weights and log prices. 

 

If the estimated errors etn
*  lnptn − t

* − n
* that implicitly appear in the weighted least squares 

minimization problem turn out to equal 0, then the underlying model, ptn = tn for t = 1,...,T, 

nS(t), holds without error and thus provides a good approximation to reality. Moreover, under 

these conditions, Pt* will equal Pt** for all t. If the fit of the model is not good, then it may be 

necessary to look at other models such as those to be considered in subsequent sections.  

 

The solution to the weighted least squares regression problem defined by (40) can be used to 

generate imputed prices for the missing products. Thus if product n in period t is missing, define 

ptn  t
*n

*. The corresponding missing quantity is defined as qtn  0. Some statistical agencies 

use hedonic regression models to generate imputed prices for missing prices and then use these 

imputed prices in their chosen index number formula. This imputation procedure is an alternative 

to the inflation adjusted carry forward price procedure explained in section 3. From the viewpoint 

of the economic approach to index number theory, the section 3 procedure seems to be preferable 

since the Fisher index used in section 3 is a fully flexible functional form whereas the preferences 

that are exact for the Weighted Time Product Dummy model must be either linear in quantities or 

 
41 See Hardy, Littlewood and Pólya (1934; 26). 
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be Cobb Douglas. However, as indicated above, if the error terms in (40) are small, the missing 

product prices generated by the solution to (40) can be used with some confidence.   

 

The axiomatic properties of the price level functions t
* generated by the solution to (40) were 

studied in section 21 of Chapter 7 and will be noted in the following section. One unsatisfactory 

property of the WTPD price levels t
* is the following one:  a product that is available in only one 

period out of the T periods has no influence on the aggregate price levels t
*. This means that the 

price of a new product that appears in period T has no influence on the price levels. The hedonic 

regression models in the next section that make use of information on the characteristics of the 

products do not have this unsatisfactory property of the weighted time dummy hedonic regression 

models studied in this section. 

        

6. The Time Dummy Hedonic Regression Model with Characteristics Information 

 

In this section, it is again assumed that there are N products that are available over a window of T 

periods. As in the previous sections, we again assume that the quantity aggregator function for the 

N products is the linear function, f(q)  q = n=1
N nqn where qn is the quantity of product n 

purchased or sold in the period under consideration and n is the quality adjustment factor for 

product n. What is new is the assumption that the quality adjustment factors are functions of a 

vector of K characteristics of the products. Thus it is assumed that product n has the vector of 

characteristics zn  [zn1,zn2,...,znK] for n = 1,...,N. We assume that this information on the 

characteristics of each product has been collected.42 The new assumption in this section is that the 

quality adjustment factors n are functions of the vector of characteristics zn for each product and 

the same function, g(z) can be used for each quality adjustment factor; i.e., we have the following 

assumptions: 

 

(49) n  g(zn) = g(zn1,zn2,...,znK) ;                                                                                     n = 1,...,N. 

 

Thus each product n has its own unique mix of characteristics zn but the same function g can be 

used to determine the relative utility to purchasers of the products.43 Define the period t quantity 

vector as qt = [qt1,...,qtN] for t = 1,...,T. If product n is missing in period t, then define qtn  0. 

Using the above assumptions, the aggregate quantity level Qt for period t is defined as: 

 

(50) Qt  f(qt)  n=1
N nqtn = n=1

N g(zn)qtn ;                                                                      t = 1,...,T. 

 

Using our assumption of (exact) utility maximizing behavior with the linear utility function 

defined by (50), equations (10) become the following equations: 

 

(51) ptn = tg(zn) ;                                                                                                   t = 1,...,T; nS(t). 

 

The assumption of approximate utility maximizing behavior is more realistic, so error terms need 

to be appended to equations (51). We also need to choose a functional form for the quality 

adjustment function or hedonic valuation function g(z). Consider the following functional form 

for the hedonic valuation function: 

 
 

42 Basically, we want to collect information on the most important price determining characteristics of each 

product; see Triplett (2004) and Aizcorbe (2014) for many examples of this type of hedonic regression and 

references to the applied literature on this topic.   
43 In this section, we require that each of the N products possess a positive amount of each characteristic; 

i.e., we require that zn >> 0K for n = 1,...,N. This assumption will be relaxed in the following section.  
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(52) g(z) = g(z1,...,zK)   =

K

k k
kze

1

0


. 

 

Define the logarithms of the quality adjustment factors n as follows: 

 

(53) n  lnn = lng(zn) = 0 + k=1
K klnznk ;                                                                      n = 1,...,N 

 

where we have used assumptions (50) and (53). Now take logarithms of both sides of equations 

(51) and add error terms etn to the resulting equations. Using equations (53), we obtain the 

following system of estimating equations:44 

 

(54) lnptn = t + 0 + k=1
K klnznk + etn ;                                                                  t = 1,...,T; nS(t) 

   

where as usual, we have defined t as lnt for t = 1,...,T. Equations (54) are the equations which 

characterize the classic log linear time dummy hedonic regression model. 45  Note that our 

derivation of this model rests on the assumption of approximate utility maximizing behavior on 

the part of purchasers of the N products. Note also that our underlying economic model, which 

sets the error terms equal to zero, assumes that the N products are perfect substitutes once they 

have been quality adjusted, where the logarithms of the quality adjustment factors are defined by 

(53).46 

 

Estimates for   [1,...,T] and   [0,1,...,K] can be obtained by minimizing the sum of  the 

squared errors etn which appear in equations (54). This leads to the following least squares 

minimization problem: 

 

(55) min ,  t=1
T nS(t) [lnptn − t − 0 − k=1

K klnznk]2. 

 

A solution ,  to the minimization problem (55) will satisfy the following first order conditions: 

 

(56) nS(t) [lnptn − t − 0 − k=1
K klnznk] = 0 ;                                                                  t = 1,...,T; 

(57) t=1
T nS(t) [lnptn − t − 0 − k=1

K klnznk] = 0 ; 

(58) t=1
T nS(t) [lnptn − t − 0 − k=1

K klnznk]lnznk = 0 ;                                                  k = 1,...,K. 

 

Equations (56)-(58) are T+1+K equations in the T+1+K unknown parameters in the vectors  and 

. However, solutions to these equations are not unique; if t for t = 1,...,T and k for k = 0,1,...,K 

is a solution to (56)-(58), then t +  for t = 1,...,T, 0 −  and k for k = 1,...,K is also a solution 

for any number . Thus a normalization on these parameters is required for a unique solution to 

 
44 If both sides of equation tn in equations (54) are differentiated with respect to lnznk, we find that 

lnptn/lnznk = k for nS(t). Thus k is the percentage change in the price of a product with respect to a one 

percent increase in the amount of characteristic k in a product. In general, this (constant) elasticity will be 

positive; i.e., a small increase in the amount of characteristic k that is present in a generic product will 

increase the price of the product.  
45 This model was first introduced by Court (1939) as his hedonic suggestion number 2. It was popularized 

by Griliches (1971; 7) and others. See Triplett (2004) and Aizcorbe (2014) for hundreds of references to the 

literature on the use of this model.  
46 Thus smaller in magnitude errors etn in the hedonic regression imply that the underlying economic model 

provides a closer approximation to actual behavior; i.e., a higher R2 for the linear regression model defined 

by (54) means that the underlying economic model provides a closer approximation to actual behavior.  
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(56)-(58).47 Choose the normalization 1
* = 0 which is equivalent to 1

* = 1. Thus set 1
* = 0 in 

equations (56)-(58), drop the first equation in equations (56) and solve the remaining T+K 

equations for 2
*,..., T

* and 0
*, 1

*,..., K
*.48 Once these parameters have been determined, the 

estimated n
*  lnn

* can be defined as follows using definitions (53):  

 

(59) n
*  lnn

* = lng(zn) = 0
* + k=1

K k
*lnznk ;                                                                n = 1,...,N. 

 

Using equations (56) evaluated at * and * and definitions (59), we see that lnt
*  t

* is equal to 

the following expression: 

 

(60) lnt
* = [1/N(t)] nS(t) ln(ptn/n

*) ;                                                                                t = 1,...,T 

 

where n
*  exp[n

*] for n = 1,...,N and where N(t) is equal to the number of products that are 

available in period t. Thus the estimated period t price level, t
*, is an equally weighted geometric 

average of the quality adjusted prices ptn/n
* for the products that are present in period t.49 Once 

the t
* have been calculated, the price index between periods t and  is defined as t

*/* for 1  t, 

  T. If quantity data are available, then we have the usual two methods for constructing period 

by period price and quantity levels, Pt and Qt for t = 1,...,T; see (45)-(48) above. 

 

It is useful to compare the present time dummy hedonic regression that uses characteristics 

information with the time dummy product regression in the previous section where the only 

characteristic of each product was the product itself; i.e., recall the least squares minimization 

problem defined by (30). It seems that this earlier model is more general than the present model. 

To see this, define n
* by definitions (59) for n = 1,...,N. Substitute these n

* into the objective 

function for the minimization problem defined by (30) in section 5. Thus these n
* are feasible n 

that could be inserted into (30) but they may not be optimal; i.e., in general, we can expect the 

time dummy product least squares minimization problem defined by (30) to deliver a lower sum 

of squared residuals than the solution to (55) delivers. Thus we might ask at this point why 

consider the least squares problem (55) when, in general, the least squares problem (30) will 

deliver a better outcome in terms of fitting the data? The problem with (30) is that there may be 

no unique solution to the least squares minimization problem (even after setting 1 = 0) if product 

turnover is rapid; i.e., if there are very few matched models in the window of observations, then 

the regression associated with (30) may not have enough degrees of freedom to provide a solution 

to the first order condition equations that are associated with this model. An extreme case where 

there is no unique solution to (30) is the case where every product is a new one which appears in 

only one period.50 In this case, there are T + N − 1 unknown t and n parameters (after making 

one normalization) and only T observed prices. Thus the use of hedonic regressions with 

 
47 We also need the modified equations (56)-(58) to satisfy a full rank condition so that the matrix of 

coefficients associated with these equations can be inverted. Thus in particular, K, the number of 

characteristics, cannot be too big relative to N, the number of products.  
48 Alternatively, set 1 = 0 in equations (54) and run a simple linear regression to obtain estimates for the 

remaining parameters.  
49 An equivalent result was derived in Triplett and McDonald (1977; 150). 
50 Housing is an example of such a unique product. Every dwelling unit is uniquely determined by its 

location and over time, the structure associated with the housing unit depreciates in value with age (or it 

may appreciate in value due to renovations and improvements). Thus hedonic regressions with housing 

characteristics information must be used in order to obtain useful price indexes for housing. For 

applications of hedonic regressions to property prices, see Eurostat (2013), Diewert, Haan and Hendricks 

(2015), Hill (2013), Diewert and Shimizu (2015) (2016) (2020), Diewert, Huang and Burnett-Issacs (2017) 

and Silver (2018). 
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characteristics information is particularly useful in situations where there is rapid product 

turnover and there are relatively few matched models.  

 

The price levels t
* defined by (60) are not satisfactory for the following reason: suppose periods 

 and t have exactly the same set of products that are available for those two periods. Then the 

price index between those two periods is equal to the following expression: 

 

(61) t
*/* = nS(t) (ptn/pn)1/N(t). 

 

Thus the price index between the two periods is equal to a simple (equally weighted) geometric 

average of the price ratios ptn/pn for the products that are present in both periods; i.e., the 

economic importance of the products is not taken into account.51     

 

In the previous section, we noted that weighting prices by their economic importance was 

generally recommended (but not necessary if the fit of the corresponding hedonic regression was 

good). The same conclusion applies in the present context. Thus if quantity information is 

available (in addition to price and product characteristic information), then it is preferable to 

generate  and  estimates by solving the following weighted least squares minimization 

problem:52 

 

(62) min ,  t=1
T nS(t) stn[lnptn − t − 0 − k=1

K klnznk]2 

 

where the expenditure or sales shares stn are defined as stn  ptnqtn/iS(t) ptiqti for t = 1,...,T and 

nS(t). A solution ,  to the minimization problem (62) will satisfy the following first order 

conditions: 

 

(63) nS(t) stn[lnptn − t − 0 − k=1
K klnznk] = 0 ;                                                               t = 1,...,T; 

(64) t=1
T nS(t) stn[lnptn − t − 0 − k=1

K klnznk] = 0 ; 

(65) t=1
T nS(t) stn[lnptn − t − 0 − k=1

K klnznk]lnznk = 0 ;                                              k = 1,...,K. 

 

Equations (63)-(65) are T+1+K equations in the T+1+K unknown parameters in the vectors  and 

. However, solutions to these equations are not unique; if t for t = 1,...,T and k for k = 0,1,...,K 

is a solution to (63)-(65), then t +  for t = 1,...,T, 0 −  and k for k = 1,...,K is also a solution 

for any number . Thus a normalization on these parameters is required for a unique solution to 

(64)-(65).53 Choose the normalization 1
* = 0 which is equivalent to 1

* = 1. Thus set 1
* = 0 in 

equations (63)-(65), drop the first equation in equations (63) and solve the remaining T+K 

equations for 2
*,..., T

* and 0
*, 1

*,..., K
*. Once these parameters have been determined, the 

estimated n
* can be defined as n

*  0
* + k=1

K k
*lnznk for n = 1,...,N. Once the n

* have been 

 
51 As in section 5, we note that if the estimated squared residuals for this model are small, then the 

estimated t
* defined by (60) will be satisfactory since in this case, pt  t

** so that prices vary 

(approximately) proportionally over time and thus n=1
N (ptn/n

*)1/N  t
* for t = 1,...,T. Any missing price 

for period t and product n is defined as ptn  t
*n

* in the products n=1
N (ptn/n

*)1/N. The idea of using the 

R2 or the fit of a hedonic regression model to judge its adequacy can be traced back to Silver (2010; S220) 

(2011; 561). He implicitly suggested that hedonic regressions should only be used when the products under 

consideration are highly substitutable and hence when the R2 for the relevant hedonic regression is high.  
52 Diewert (2003b) (2005b) considered this model for the bilateral case where T = 2. Silver and Heravi 

(2005) and de Haan and Krsinich (2014) (2018) considered the general model. 
53 As usual, we need a full rank condition to be satisfied so that the matrix of coefficients in the system of 

linear equations involving  and  can be inverted. 
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defined, the corresponding quality adjustment factors are defined as n
*  exp[n

*] > 0 for n = 

1,...,N.  

   

Using equations (63) evaluated at * and *, we see that t
*  exp[t

*] is equal to the following 

expression:54 

 

(66) t
* = exp[nS(t) stnln(ptn/n

*)] ;                                                                                     t = 1,...,T 

 

with 1
*  1. Thus the period t estimated price level, t

*, is an expenditure share weighted 

geometric mean of the quality adjusted period t prices, ptn/n
*, for the products n that are present 

in period t. Once the t
* have been calculated, the price index between periods t and  is defined 

as t
*/* for 1  t,   T. Note that (62) depends on the availability of expenditure share 

information. If, in addition, quantity data are available, then we have the usual two methods for 

constructing period by period price and quantity levels, Pt and Qt for t = 1,...,T; see (45)-(48) 

above. 

 

The new price indexes are a clear improvement over their unweighted counterparts defined earlier 

by equations (60). In the present situation, using equations (66), we see that t
*/* is a share 

weighted geometric mean of the quality adjusted period t prices, ptn/n
*, for the products n that 

are present in period t with weights stn in the numerator divided by the share weighted geometric 

mean of the quality adjusted period  prices, pn/n
*, for the products n that are present in period  

with weights sn in the denominator. Thus economic importance of each product counts in the 

present model whereas it did not in the corresponding unweighted model. 

 

Note that equations (66) are the same as equations (43) in the previous section. The new quality 

adjustment parameters n
* are defined by the following counterparts to equations (44): 

 

(67) n
*  exp[0

* + k=1
K k

*lnznk] ;                                                                                   n = 1,...,N.    

 

Now use definitions (45)-(48) to define Pt*, Qt*, Pt** and Qt** where the new t
* and  n

* are 

defined by (66) and (67). We can again deduce the inequality in (48) using these new definitions; 

i.e., we get the following inequalities due to de Haan (2004b) (2010) and de Haan and Krsinich 

(2018; 763): 

 

(68) Pt**  nS(t) ptnqtn/nS(t) n
*qtn  t

*  Pt* ;                                                                t = 1,...,T.    

 

As in the previous section, Pt* is a weighted geometric mean of the quality adjusted prices ptn/n
* 

that are present in period t where the weight for ptn/n
* is the period t expenditure (or sales) share 

for product n in period t, stn, and Pt** is the corresponding weighted harmonic mean of the quality 

adjusted prices ptn/n
* using the same weights.   

 

The solution to the weighted least squares minimization problem defined by (62) along with the 

normalization 1 = 0 can also be obtained by running the following linear regression with 1 set 

equal to zero : 

 

(69) (stn)1/2lnptn = (stn)1/2t + (stn)1/20 + (stn)1/2k=1
K klnznk + etn ;                          t = 1,...,T; nS(t). 

 

 
54 These equations are equivalent to equations (8) in de Haan and Krsinich (2018; 760).  
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The solution to the weighted least squares regression problem defined by (62) can be used to 

generate imputed prices for the missing products. Thus if product n in period t is missing, define 

ptn  t
*n

*. The corresponding missing quantity is defined as qtn  0. As was mentioned in the 

previous section, some statistical agencies use hedonic regression models to generate imputed 

prices for missing prices and then use these imputed prices in their chosen index number formula. 

If the weighted sum of squared errors, t=1
T nS(t) stn[lnptn − t − 0 − k=1

K klnznk]2, is small or 

equivalently if the R2 for the linear regression defined by (69) is large, then using the imputed 

prices generated by this model to fill in for missing prices is justified. 

 

Using the solution functions for the price levels t
* given by (66) plus the definition of the 

weighted least squares minimization problem (62), it can be shown that t
* regarded as a function 

of P  [p1,...,pT], Q  [q1,...,qT] and Z  [z1,...,zK] satisfies the following tests:55 

 

Test 1: The weak identity test for prices. If p = pt and q = qt, then t
*(P,Q,Z) = *(P,Q,Z).  

 

Test 2: The weak fixed basket test for prices or the weak identity test for quantities. If q = qt  q 

and p = pt then the price index for period t relative to period  is t
*(P,Q,Z)/*(P,Q,Z) = ptq/pq.  

 

Test 3: Linear homogeneity test for prices. Let  > 0. Then t
*(p1,...,pt−1,pt,pt+1,...,pT,Q,Z) = 

t
*(P,Q,Z) for t = 1,...,T. Thus if all prices in period t are multiplied by a common scalar factor 

, then the price level of period t relative to the price level of any other period r will increase by 

the multiplicative factor . 56 

 

Test 4: Homogeneity test for quantities. Let  > 0. Then t
*(P,q1,...,qt−1,qt,qt+1,...,qT,Z) = 

t
*(P,Q,Z) for t = 1,...,T. Thus if all quantities in period t are multiplied by a common scalar factor 

, then the price level of any period r remains unchanged. 

 

Test 5: Invariance to changes in the units of measurement of the characteristics. The price level 

functions t
*(P,Q,Z) for t = 1,...,T remain unchanged if the K characteristics are measured in 

different units. 

 

Test 6: Invariance to changes in the ordering of the commodities. The price level functions 

t
*(P,Q,Z) for t = 1,...,T remain unchanged if the ordering of the N commodities is changed. 

 

Test 7: Invariance to changes in the ordering of the time periods. If the T time periods are 

reordered by some permutation of the first T integers, then the new price level functions are equal 

to the same permutation of the initial price level functions.  

 

Test 8: Responsiveness to Isolated Products Test: If a product is available in only one period in 

the window of T periods, this test asks that the price level functions t
*(P,Q,Z) respond to 

changes in the prices of these isolated products; i.e., the test asks that the price level functions are 

not constant as the prices for isolated products change. This test is a variation of Test 5 suggested 

by Zhang, Johansen and Nygaard (2019), who suggested a bilateral version of this test.57 

 

 
55  See Diewert (2004) (2005b) for materials on the test approach applied to time product hedonic 

regressions with and without characteristics information. 
56 Furthermore, the price levels *(P,Q,Z) for   t are homogeneous of degree 0 in the components 

of pt; i.e., we have *(p1,...,pt−1,pt,pt+1,...,pT,Q,Z) = *(P,Q,Z) for all   t.    
57 This test was explicitly suggested by Claude Lamboray.  
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The weighted time product dummy hedonic regression price levels using characteristics 

information, the t
*(P,Q.Z), that solve (62), do not satisfy the following Tests 9-12. 

 

Test 9: The strong identity test for prices. If p = pt, then *(P,Q,Z) = t
*(P,Q,Z).  

 

Thus Test 9 is similar to Test 1 but Test 9 asks that the price levels for two periods be equal if the 

price vectors for the two periods are identical  even if the quantity vectors for the two periods are 

different whereas Test 1 asks that the price levels for two periods be equal if the price and 

quantity vectors for the two periods are identical. 

 

Test 10: The strong  fixed basket test for prices or the strong identity test for quantities. If q = qt 

 q, then the price index for period t relative to period  is t
*(P,Q,Z)/*(P,Q,Z) = ptq/pq.58 

 

Test 11: Invariance to changes in the units of measurement for the quantities. The price level 

functions t
*(P,Q,Z) for t = 1,...,T remain unchanged if the N commodities are measured in 

different units of measurement.     
 

Test 12: Responsiveness to Changes in Imputed Prices for Missing Products Test: If there are 

missing products in one or more periods, then one can define imputed prices for these missing 

products. This test asks that the price level functions *(P,Q,Z) respond to changes in these 

imputed prices; i.e., the test asks that the price level functions are not constant as the imputed 

prices change. This test allows a price level to decline if new products enter the marketplace 

during the period and for consumer utility to increase as the number of available products 

increases. If this test is not satisfied, then the price levels will be subject to new products bias. 

This is an important source of bias in a dynamic product universe. 

 

Many multilateral index number methods do not satisfy the strong identity Tests 9 and 10 and the 

responsiveness Test 12, so the failure of the hedonic regression price levels to pass these tests is 

not catastrophic. At first sight, the failure of the *(P,Q,Z) to pass the invariance to changes in 

the units of measurement for the N quantities qn is more worrisome. The failure of this test 

suggests that the use of hedonic regressions to adjust for quality changes should be restricted to 

classes of products that are similar and have a dominant characteristic that all of the products 

possess. The quantity qn of each product should be measured in units of this dominant 

characteristic. Thus if the product class is candy bars, the quantity of each product should be 

measured by its weight. If the product class is a beverage, each product’s quantity should be 

measured by its volume. If this advice is followed, then the unit of measurement for all quantities 

in the aggregate will be the same. Thus if the units of measurement change, the change of units 

should affect all quantities in the same way. It can be shown that the hedonic regression price 

levels using characteristics information, *(P,Q,Z), satisfy the following test: 

 

Test 13: Restricted Change of Units Test. If the units of measurement for all products are changed 

by the same factor, the price levels t
*(P,Q,Z) remain invariant; i.e., the price levels satisfy 

t
*(−1P,Q,Z) = t

*(P,Q,Z) for all scalars  > 0 for t = 1,...,T.59  

 
58 The price levels t

*(P,Q,Z) that are directly defined from the solution to (62) using equations (66) will 

not in general satisfy Test 10. However, if we use the solution to (62) to define the n
* and then use 

definitions (47) and (48) to define the period t price and quantity levels, Pt** and Qt**, then the Pt** will 

satisfy Test 2. However, the present set of tests applies to the price levels t
*(P,Q,Z) that are directly 

defined by the solution to (62).  
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Thus the failure of the hedonic regression price levels to pass the unrestricted change of units test, 

Test 6, is not catastrophic because for closely related products, these price levels will pass the 

restricted change of units test, Test 13.         
 

Recall that the weighted time product dummy price levels defined in the previous section had the 

undesirable property that a product that is available in only one period out of the T periods had no 

influence on the aggregate price levels t
*. This meant that the price of a new product that appears 

in period T had no influence on the resulting price levels. The weighted time dummy hedonic 

price levels t
*(P,Q,Z) defined in this section no longer have this undesirable property since they 

satisfy Test 8 above. 

 

It is possible to apply the tests listed above to the weighted time dummy price levels defined in 

the previous section. However, in order to do this, the g(z) function defined by (52) needs to be 

replaced by the linear function g(z)  z where z is now an N dimensional vector of 

characteristics (instead of a K dimensional vector). Assume that there are N models and the 

characteristics vector for product n is zn  en for n = 1,...,N where en is the nth unit vector; i.e., en 

is an N dimensional vector which has a 1 in component n and zeros elsewhere. Thus in this case, 

the Z matrix is the N by N matrix Z  [z1,z2,...,zN] = IN where IN is the N by N identity matrix. 

With this new definition for g(z) and for the matrix Z, we have g(zn) = g(en) = en = n for n = 

1,...,N, which are equations (49). Equations (51) become ptn = tg(zn) = tn for t = 1,...,T and 

nS(t). From these equations, we can follow the steps in the previous section and the counterpart 

to the weighted least squares minimization problem (62) is (40), the final model in the previous 

section. Thus we can apply the above tests to the price levels that result from solving (40). We 

find that the weighted time dummy hedonic price levels without characteristics satisfies Tests 1-7, 

11 and 13; they fail Tests 8-10 and 12. Thus the test performance of both methods is identical 

except that the price levels from the weighted hedonic time product dummy model that result 

from solving (40) pass Test 11 (invariance to changes in the units of measurement for quantities) 

and fail Test 8 (responsiveness to isolated products test) and the weighted hedonic time product 

dummy model that uses characteristics information that result from solving (62) pass Test 8 and 

fail Test 11.60          

 

It is possible to derive some approximate equalities for the n
* that are counterparts to the exact 

equalities (44) for the n
* that were satisfied for the weighted time product dummy quality 

adjustment parameters for the model defined by (40) in the previous section. Recall that the 

estimated quality adjustment factors for the N products in the present model are the n
* defined 

by (67) for n = 1,...,N.  The logarithms of these estimated quality adjustment factors are n
*  

lnn
* = 0

* + k=1
K k

*lnznk for n = 1,..,N. Once the *  [1
*,2

*,...,T
*] and *  [0

*,1
*,...,K

*] 

solution to (62) has been determined (with 1
* = 1), the sample residuals etn

* can be defined by 

equations (70) below:  

 

(70) etn
*  lnptn − t

* − 0
* − k=1

K k
*lnznk ;                                                             t = 1,...,T; nS(t) 

              = lnptn − t
* − n

*                                                                  

 
59 Notation: Q = [q1,q2,..., qT]; i.e., if the N by T matrix Q is multiplied by the scalar , then all NT 

elements in the matrix Q are multiplied by this scalar.  
60 However, as indicated earlier, often statistical agencies have to choose the hedonic regression model with 

characteristics over the time product dummy model explained in the previous section due to frequent model 

changes or to the fact that some products are unique (like housing). In the case of unique products, the time 

dummy approach fails and the characteristics approach is the only viable approach.  
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              = ln(ptn/t
*) − n

*                                                                                        since t
*  lnt

*. 

 

Rearranging equations (70), it can be seen that the n
* satisfy the following equations: 

 

(71) n
* = ln(ptn/t

*) − etn
* ;                                                                                  n = 1,...,N; tS*(n). 

 

For each n, multiply both sides of (71) by the share stn for each tS*(n) and sum the resulting 

equations over all t that belong to the set S*(n). The following system of N equations is obtained:  

 

(72) tS*(n) stnn
* = tS*(n) stn[ln(ptn/t

*) − etn
*] ;                                                                 n = 1,...,N 

                              tS*(n) stnln(ptn/t
*) 

 

where the approximate equalities in (72) will follow since the minimization problem defined by 

(62) will make the squared errors (etn
*)2 small within the constraints of the hedonic model. Thus 

we have the following approximation for the n
*:61 

 

(73) n
*  [tS*(n) stnln(ptn/t

*)]/tS*(n) stn ;                                                                       n = 1,...,N. 

 

Thus the logarithm of the product n quality adjustment factor, n
*, is approximately equal to a 

share weighted average of the logarithms of the inflation adjusted prices ptn/t
* for product n over 

the periods t when this product was sold (or purchased) on the marketplace. Note that the 

averages on the right hand sides of the approximate equalities (73) are taken over the entire 

sample period.  

 

The next few paragraphs will be devoted to addressing a problem that was first posed by de Haan 

and Krsinich (2018; 760): are hedonic regression models consistent with the use of unit values to 

aggregate over narrowly defined products at the first stage of aggregation?   

 

Equations (70) and the definitions n
*  lnn

* for n = 1,...,N can be used to establish the following 

equalities: 

 

(74) ptn = n
*t

*
 exp[etn

*] ;                                                                                                   t = 1,...,T. 

 

Suppose that the underlying hedonic model holds exactly so that each error term etn
* is equal to 0. 

Finally, suppose that all of the products are perfect substitutes so that all of the quality adjustment 

factors n
* are equal. Thus the following equations hold: 

 

(75) 1
* = 2

* = ... = N
*. 

 

Thus all of the estimated n
* will equal 1

* for n = 2,...,N. Since the etn
* = 0 by assumption, 

exp[etn
*] = 1 for t = 1,...,T; nS(t). Substitute these relationships into equations (74). Now 

multiple both sides of equation tn in equations (74) by qtn for t = 1,...,T; nS(t). We obtain the 

following system of equations after a certain amount of summation within each period: 

 

(76) nS(t) ptnqtn = 1
*t

* nS(t) qtn ;                                                                                    t = 1,...,T. 

 

 
61 These equations provide approximate counterparts to equations (44) which were exact for the weighted 

time product dummy model discussed in section 5 above.   



 26 

Now take ratios of equations (76) for t = 1 and a general t. After a bit of rearrangement, we obtain 

the following expression for the price index between periods 1 and t: 

 

(77) t
*/1

* = {nS(t) ptnqtn/nS(t) qtn}/{nS(1) p1nq1n/nS(1) q1n};                                       t = 1,...,T.                           

 

The right hand side of (77) for period t can be recognized as the unit value price index between 

periods 1 and t. 

 

The above algebra resolves the index number discontinuity problem recognized by de Haan and 

Krsinich (2018; 760). These authors noted that the weighted geometric mean representation for 

t
* = exp[nS(t) stnln(ptn/n

*)] (recall equations (66)) did not seem to collapse down to a unit value 

index if all of the estimated n
* were equal, which is disconcerting because if the products are 

perfect substitutes (without quality adjustment), then the appropriate index should collapse down 

to a unit value index (because each additional unit of any product gives the purchaser the same 

utility). However, if the products are perfect substitutes and markets are functioning properly, the 

price of every product in the group under consideration should be the same in each period. Under 

these conditions, the estimated n
* will all be equal and equations (74) will become ptn = 1

*t
* 

and equations (77) will hold. Thus under these conditions, there is no discontinuity problem.          

  

As was noted above, once the estimated coefficients *  [1
*,...,T

*] and *  [1
*,...,N

*] have 

been determined, these estimates can be used to determine imputed prices for the missing 

observations; i.e., if product n in period t is missing, define ptn  t
*n

*. The corresponding 

missing quantities and shares are defined as qtn  0 and stn  0. Using these imputed prices and 

quantities, we can form complete price, quantity and share vectors for all N products for each 

period t. Denote these vectors as pt, qt and st for t = 1,...,T. Using the fact that the share for a 

missing product is equal to zero, we can rewrite equations (66) as follows: 

 

(78) t
* = n=1

N (ptn/n
*) tns

;                                                                                                t = 1,...,T. 

 

Define the sequence of hedonic price indexes, PH
t, as PH

t  t
*/1

* for t = 1,...,T.62 Using equations 

(66) and  n
*  lnn

* for n = 1,...,N, we have the following expressions for the logarithms of the 

hedonic price indexes:  

  

(79) lnPH
t = n=1

N stn(lnptn − n
*) − n=1

N s1n(lnp1n − n
*) ;                                                   t = 1,...,T. 

 

It is now possible to compare the sequence of price indexes to the corresponding Törnqvist Theil 

fixed base indexes that make use of the imputed prices generated by the present model for the 

missing products. The logarithm of the fixed base Törnqvist Theil price index between periods 1 

and t, PT
t, is defined as follows:63 

 

(80) lnPT
t  n=1

N ½(stn + s1n)(lnptn − lnp1n)                                                                          t = 1,...,T 

                = n=1
N ½(stn + s1n)[(lnptn − n

*) − (lnp1n − n
*)]. 

 
62 Recall that we set 1

* = 0 when solving equations (63)-(65) and hence 1
* = 1. This fact and the first 

equation in (66) implies that 1
* = 1 =  exp[nS(1) s1nln(p1n/n

*)] = exp[n=1
N s1nln(p1n/n

*)] and thus PH
t  

t
*/1

* = t
* for t = 1,...,T. However, when we compare PH

t to the corresponding fixed base Törnqvist index 

PT
t, it proves to be more convenient to define PH

t  as t
*/1

* for t = 1,...,T where 1
* is defined by the first 

equation in (66).   
63 The imputed prices and shares defined above equations (78) are used to fill in any missing prices and 

shares in the Törnqvist formula.  



 27 

 

Taking the difference between (79) and (80), we can derive the following expressions for t = 

1,2,...,T: 

 

(81) lnPH
t − lnPT

t = n=1
N ½(stn − s1n)(lnptn − n

*) + n=1
N ½(stn − s1n)(lnp1n − n

*). 

 

Since n=1
N (stn − s1n) = 0 for each t, the two sets of terms on the right hand side of equation t in 

(81) can be interpreted as normalizations of the covariances between st − s1 and lnpt − * for the 

first set of terms and between st − s1 and lnp1 − * for the second set of terms. If the products are 

highly substitutable with each other, then a low ptn will usually imply that lnptn is less than the 

average log price n
* and it is also likely that stn is greater than s1n so that (stn − s1n)(lnptn − n

*) is 

likely to be negative. Hence the covariance between st − s1 and lnpt − * will tend to be negative. 

On the other hand, if p1n is unusually low, then lnp1n will be less than the average log price n
* 

and it is likely that s1n is greater than stn so that (stn − s1n)(lnp1n − n
*) is likely to be positive. 

Hence the covariance between st − s1 and lnp1 − * will tend to be positive. Thus the first set of 

terms on the right hand side of (81) will tend to be negative while the second set will tend to be 

positive. If there are no divergent trends in log prices and sales shares, then it is likely that these 

two terms will largely offset each other and under these conditions, PH
t is likely to approximate 

PT
t reasonably well. However, with divergent trends and highly substitutable products, it is likely 

that the first set of negative terms will be larger in magnitude than the second set of terms and 

thus PH
t is likely to be below PT

t under these conditions. On the other hand, if there are missing 

products in period 1, then the second set of covariance terms can become very large and positive 

and outweigh the first set of generally negative terms.64 The bottom line is that PH
t and PT

t can 

diverge substantially. In such a case, it may be preferable to use the hedonic regression to simply 

fill in the missing prices and use a superlative index to generate price indexes rather than use the 

price levels t
* generated by the hedonic time dummy regression as the price indexes.65        

 

The hedonic valuation function g(z) defined by (49) has a useful property: one can impose 

constant returns to scale in the characteristics( the property g(z) = g(z) for all  > 0) if the k 

satisfy the restriction k=1
K k = 1. However, if we want to apply equations (63)-(65) or equations 

(69) as estimating equations for the unknown parameters in g(z), we need positive amounts of all 

characteristics in all models so that lnznk is well defined; i.e., we need znk > 0 for all n = 1,...,N 

and k = 1,...,K. The alternative hedonic regression model to be considered at the beginning of the 

following section relaxes this positivity restriction. 

 

7. Alternative Hedonic Regression Models with Characteristics Information 

 

As noted in the previous section, the hedonic valuation function g(z) defined by (52) requires that 

positive amounts of all characteristics be present in all N models. It would be useful to have a 

hedonic regression model that could in principle deal with the introduction of new characteristics 

over the sample period. This can be done if we replace the g(z) defined by (52) by the following 

functional form for g(z): 

 

(82) g(z1,z2,...,zK)  exp[0 + k=1
K kzk]. 

 

 
64 See Diewert (2018; 39) for just such an example. 
65 However, if the fit in the hedonic regression is good, then prices are close to being proportional over time 

and the price levels generated by the hedonic regression will generate satisfactory results.  
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Using this new hedonic valuation function and making the same assumptions (49)-(51) as were 

made in the previous section along with the new assumption (82), we obtain a new weighted least 

squares minimization problem that is a counterpart to (62). The new system of estimating 

equations which are counterparts to equations (69) are the following ones: 

 

(83) (stn)1/2lnptn = (stn)1/2[t + 0 + k=1
K kznk] + etn ;                                               t = 1,...,T; nS(t) 

 

where as usual, t  lnt for t = 1,...,T. We can find estimators for the unknown parameters in 

equations (83) by running the linear regression defined by (83) (with 1 set equal to zero) or by 

minimizing the following sum of weighted squared residuals etn with respect to the components of 

the parameter vectors  and :66 

 

(84) min ,  t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk]2. 

 

A solution ,  to the minimization problem (84) will satisfy the first order conditions (63)-(65) in 

the previous section, except that znk replaces lnznk for all n and k. The rest of the analysis of the 

hedonic regression model defined by (84) follows along the same lines as the share weighted 

model (62) defined in the previous section. In particular, in order to obtain a unique solution to 

the modified equations (63)-(65), we impose the normalization 1 = 0 and drop the first equation 

in the modified equations (63).67 The new product n quality adjustment parameters n
* and n

* are 

defined by equations (85) and the new sample residuals are defined by equations (86):   

 

(85) n
*  lnn

* = lng(zn) = 0
* + k=1

K k
*znk ;                                                       n = 1,...,N; 

(86) etn
*  lnptn − t

* − 0
* − k=1

K k
*znk ;                                                               t = 1,...,T; nS(t); 

             = lnptn − t
* − n

*. 

 

The new period t price levels, t
*, are still defined by equations (66). The remaining equations 

(72)-(81) in section 6 apply to the hedonic regression model defined by (84). Once the t
* have 

been calculated, the price index between periods t and  is defined as t
*/* for 1  t,   T. 

 

As usual, we can use definitions (45)-(48) to define Pt*, Qt*, Pt** and Qt** where the new t
* and  

n
* are used in these definitions. We can again deduce the de Haan inequalities Pt**  Pt* for t = 

1,...,T. defined by (66) and (67). The axiomatic properties of the new price levels t
*(P,Q,Z) are 

the same as the properties for the weighted time product dummy model that was defined by (62) 

in the previous section.    

 

The hedonic regression models defined by (84) and its equally weighted counterpart which set all 

stn = 1 were implemented by de Haan and Krsinich (2018) using monthly New Zealand data over 

3 years (so that T = 36) for the following 7 classes of electronic products: desktop computers, 

laptop computers, portable media players, DVD players, digital cameras, camcorders and 

televisions. For each product class, they had data on approximately 40 characteristics. The data 

were aggregated across outlets and basically covered the New Zealand market. New products 

entered each of the 7 markets at monthly rates that ranged from 24% to 29% and old products 

disappeared at rates that ranged from 23% to 29%. Thus there was a tremendous amount of 

product churn in each of the 7 categories. Once the weighted and unweighted regressions defined 

 
66 This is precisely the model studied by de Haan and Krsinich (2018). The results we derive below are 

identical to their results. 
67 As usual, we need a full rank condition to be satisfied so that the matrix of coefficients in the system of 

linear equations involving  and  can be inverted. 
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by (84) were run for each category, the alternative price levels, Pt* and Pt**, were computed for 

each of the 7 categories and compared.68 They found that Pt* was very close to Pt** for each 

category when the weighted regressions were used. This suggests that it may not matter that much 

which method for computing the Pt is used, since the direct hedonic regression price level 

estimates t
* were always very close to the indirect estimates based on deflating period t values 

by nS(t) n
*qtn. This is a very encouraging result. However, it was a different story for the 

unweighted hedonic regressions: they were much more volatile than their weighted counterparts 

and the direct and indirect price levels that they generated were frequently noticeably different. 

Moreover the unweighted regressions generated a sequence of price levels that had substantially 

different trends than the corresponding trends for the weighed regressions. Our conclusion is that 

the results obtained by de Haan and Krsinich support the use of weighted hedonic regressions 

over their unweighted counterparts. 

 

The above results were for regressions that covered the entire sample period. Statistical agencies 

that produce consumer price indexes need to produce monthly indexes that do not revise the data 

for the previous months. In order to deal with these constraints, Ivancic, Diewert and Fox (2009) 

suggested the use of a rolling window time dummy regression approach with a window length of 

13 months (so that strongly seasonal commodities could play a role in the resulting indexes). De 

Haan and Krsinich (2018; 773) implemented this rolling window approach for their seven product 

categories with a window length of 13 consecutive months for each weighted hedonic regression. 

The month to month change in the estimated price levels (using the Pt** option) for the last two 

months in the new window was used to update the results of the previous regression. Thus in the 

end, they could compare this rolling window approach to the generation of a price level series for 

each of the 7 categories with the corresponding one big weighed regression approach. For three of 

the seven categories, they found that the rolling window series ended up well below the 

corresponding single regression series and for one category, the rolling window series ended up 

well above the corresponding single regression series. This is evidence of chain drift in these four 

rolling window series. For these four series, it may be best to lengthen the window length for the 

rolling window hedonic regressions. This will usually cure the chain drift problem.   

 

For our next hedonic model, we introduce a discrete characteristic category; i.e., each product n 

has a characteristic where there are M separate states for this characteristic. For example, the 

product may come in 3 distinct package sizes: small, medium and large. In this case, M = 3. In 

addition, there are K continuous price determining characteristics and each product n has varying 

amounts of these characteristics. As usual, denote the vector of continuous characteristics for 

product n by zn  [zn1,...,znK] for n = 1,...,N. If product n belongs to discrete category m, define the 

M dimensional vector xn for this product as xn  [xn1,...,xnM] = em where em is a unit vector with a 

1 in component m and zeros elsewhere. We assume that there is at least one product that belongs 

to each of the M discrete categories. We assume the existence of a hedonic product valuation 

function, g(zn,xn), that gives us the relative values for the N products where the logarithm of 

g(zn,xn) is defined as follows: 

 
68 The average unadjusted R2 for the 7 weighted models was 0.981. The corresponding R2 for the equally 

weighted models was 0.885. This suggests that the popular products were close substitutes with each other 

while the unpopular models were not as close substitutes. The fact that the R squares for the 7 classes of 

products were so high means that the underlying assumption of a linear aggregator function (after quality 

adjustment) is adequate to describe the data and thus it is not necessary to explore the alternative models 

for estimating reservation prices that will be explained in subsequent sections. Of course, the drawback to 

the hedonic regression models with characteristics is that it is necessary to collect information on 

characteristics whereas the reservation price models which will be explained in subsequent sections do not 

require information on characteristics.  
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(87) lng(zn,xn)  0 + k=1
K kznk + m=1

M mxnm ;                                                               n = 1,...,N. 

 

As usual, the exact hedonic model for the prices is ptn = tg(zn,xn) for t = 1,...,T and nS(t). Upon 

taking logarithms of both sides of these price equations, using t  lnt for t = 1,...,T and using 

definitions (87) for the N products in the sample, we obtain the following weighted hedonic 

regression model: 

 

(88) (stn)1/2 lnptn = (stn)1/2 [t + 0 + k=1
K kznk + m=1

M mxnm] + etn ;                     t = 1,...,T; nS(t). 

 

Rather than running the above linear regression (after imposing the normalizations 1 = 0 and 1 

= 0), we could instead minimize the following weighted sum of squared residuals: 

 

(89) min , ,  t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk − m=1
M mxnm]2 

 

where   [1,...,T],   [0,1,...,K] and   [1,...,M]. A solution , ,  to the minimization 

problem (89) will satisfy the following first order conditions: 

 

(90) nS(t) stn[lnptn − t − 0 − k=1
K kznk − m=1

M mxnm] = 0 ;                                        t = 1,...,T; 

(91) t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk − m=1
M mxnm] = 0 ; 

(92) t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk − m=1
M mxnm]znk = 0 ;                           k = 1,...,K; 

(93) t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk − m=1
M mxnm]xnm = 0 ;                          m = 1,...,M. 

 

Equations (90)-(93) are T+1+K+M equations in the T+1+K+M unknown parameters in the 

vectors ,  and . However, solutions to these equations are not unique: the variables associated 

with the t, 0 and the m parameters are collinear. In order to obtain a unique solution to 

equations (90)-(93), it is necessary to impose two normalizations on these parameters. Choose the 

normalizations 1
* = 0 (which is equivalent to 1

* = 1) and 1
* = 0. Thus set 1

* = 0 and 1
* = 0 in 

equations (90)-(93), drop the first equation in equations (90), drop the first equation in (93) and 

solve the remaining T+K+M−1 equations for 2
*,..., T

*, 0
*, 1

*,..., K
*, 2

*,..., M
*.69 Once these 

parameters have been determined, define the estimated logarithm of the quality adjustment factor 

for product n  as: 

 

(94) n
*  0

* + k=1
K k

*znk + m=1
M m

*xnm = lnn
* ;                                                         n = 1,...,N. 

 

 Once the n
* have been defined, the corresponding quality adjustment factors are defined as n

* 

 exp[n
*] > 0 for n = 1,...,N. Evaluate equations (90)-(93) at the solution *, *, * where 1

* = 0 

and 1
* = 0.70 Using definitions (94), equations (90) evaluated at the above solution become the 

following equations: 

 

(95) t
* = nS(t) stn[lnptn − n

*] = lnt
*;                                                                               t = 1,...,T. 

 

Thus the period t estimated price level t
*  exp[t

*] is a period t share weighted geometric 

average of the period t quality adjusted prices, ptn/n
*, for nS(t). 

 
69 The number of observations in the window of observations must be equal to or greater than T+K+M−1. 

More generally, the rank of the coefficient matrix that is associated with the T+K+M−1 remaining 

equations in the system of equations defined by (90)-(93) is assumed to be full so that the coefficient matrix 

has an inverse.  
70 All T+K+M+1 of the equations (90)-(93) will be satisfied at this solution. 
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With some new definitions, it is possible to provide fairly transparent interpretations for the 

discrete variable parameters, the m
*. Define the set of observations t,n that are in the discrete 

product group m as S**(m) for m = 1,...,M. For each model n, define the partial log adjustment 

factor n
* for the continuous characteristics as follows: 

 

(96) n
*  0

* + k=1
K k

*lnznk ;                                                                                           n = 1,...,N. 

 

Using these new definitions, it can be seen that equations (93), evaluated at the normalized 

solution to the weighted least squares minimization problem (89), can be rewritten as follows: 

 

(97) m
* = t,nS**(m) stn[lnptn − t

* − n
*]/t,nS**(m) stn ;                                                    m = 1,...,M. 

 

Define n
* = exp[n

*] for n = 1,...,N. Then exp[m
*] is equal to a share weighted geometric 

average of the partially quality adjusted prices ptn/t
*n

* for all t,n that belong to the set S**(m); 

i.e., for all observations over all periods on products that are in group m for the discrete 

characteristic. Thus the characterizations of the m
* given by equations (97) are intuitively 

plausible. 

 

The analysis in the previous section can be adapted to the model defined by (89). Once the t
* 

have been calculated using definitions (95), the price index between periods t and  is defined as 

t
*/* for 1  t,   T. Once the n

* and t
* have been calculated using (94) and (95), we have the 

usual two alternative methods for constructing period by period price and quantity levels, Pt and 

Qt for t = 1,...,T. The first uses the t
* estimates as follows:   

 

(98) Pt*  t
* ;                                                                                                                      t = 1,...,T; 

(99) Qt*  nS(t) ptnqtn/Pt* ;                                                                                                   t = 1,...,T. 

  

The second method uses the n
* estimates as follows: 

 

(100) Qt**  nS(t) n
*qtn ;                                                                                                   t = 1,...,T; 

(101) Pt**  nS(t) ptnqtn/Qt** ;                                                                                              t = 1,...,T; 

               

As usual, we have the inequalities Pt**   Pt* for t = 1,...,T. 

 

As was the case for the previous hedonic regression models, the present model can be used to 

generate estimates for missing prices using the equations ptn  t
*n

* if product n is missing in 

period t. Using these estimates for missing prices, the analysis below equation (81) can be used to 

analyse the difference between Pt* = t
*/1

* and the Törnqvist Theil index PT
t for period t. 

 

We conclude this section by providing one more extension of the basic hedonic regression model 

using characteristics defined by (84).  

  

In many cases, the continuous characteristics which describe a product or model range from very 

low values to very high values. In such cases, it is unlikely that a single parameter k could 

provide an adequate approximation to the value of additional amounts of the characteristic over 

the entire range of feasible characteristic values. To deal with this difficulty, piecewise linear 

spline functions can be introduced into the hedonic model. Thus let y be the amount of a 

continuous characteristic that takes on a wide range of values. We again assume that there are N 
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models or products and T time periods and we can observe the amounts z1,...,zK of K continuous 

characteristics (where a single parameter k can capture the value of an additional unit of zk for k 

= 1,...,K) and the highly variable characteristic y that each product n has.  

 

In order to obtain more flexibility with respect to the y characteristic, the observed products could 

be grouped into say 3 groups with respect to the amounts of y that they possess: low, medium and 

high amounts of y. In order to parameterize this grouping, pick y* and y** such that approximately 

one third of the sample observations have y  y*, one third have y* < y  y** and one third have 

y** < y. Define the following dummy variable functions, Di(y) for i = 1,2,3, which depend on y: 

 

(102) D1(y)  1 if y  y* and is equal to 0 elsewhere; 

(103) D2(y)  1 if y* < y  y** and is equal to 0 elsewhere; 

(104) D3(y)  1 if y** < y and is equal to 0 elsewhere. 

 

The above functions can be used to define the logarithm of the following partial hedonic 

valuation function h(y): 

 

(105) lnh(y)  D1(y)1y + D2(y)[1y* + 2(y −y*)] + D3(y)[1y* + 2(y** −y*) + 3(y −y**)]. 

 

Note that the logarithm of h(y) is a piecewise linear function of y.71 If 1 = 2 =  3, then lnh(y) = 

1y; i.e., under these conditions, lnh(y) becomes a linear function of y.  

 

We assume the existence of an overall hedonic valuation function, g(zn,yn), that defines the 

relative utility for the N products where product n has characteristics defined by the vector zn  

[zn1,...,znK] and the scalar yn. The logarithm of g(zn,yn) is defined as follows: 

 

(106) lng(zn,yn)  0 + k=1
K kznk + lnh(yn)  ;                                                                    n = 1,...,N. 

 

As usual, the exact hedonic model for the sample prices is ptn = tg(zn,yn) for t = 1,...,T and 

nS(t). Upon taking logarithms of both sides of these price equations, using t  lnt for t = 

1,...,T and using definitions (105) and (106), we obtain the following hedonic regression model: 

 

(107) lnptn = t + 0 + k=1
K kznk + lnh(yn) + etn ;                                                    t = 1,...,T; nS(t) 

 

where lnh(yn) is defined by evaluating (105) at y = yn. It can be seen that the unknown 

parameters,   [1,...,T],   [0,1,...,K] and   [1,2,3], appear on the right hand sides of 

equations (107) in a linear fashion so the unknown parameters can be estimated using linear 

regression techniques.     

 

In order to take into account the economic importance of each model, estimates for the unknown 

parameters in equations (107) can be obtained by minimizing the following weighted sum of 

squared residuals: 

 

(108) min , ,  t=1
T nS(t) stn[lnptn − t − 0 − k=1

K kznk − lnh(yn)]2. 

 

 
71 This function is known as a linear spline function in the literature on nonparametric approximations. The 

points y* and y** are called break points or knots. With a sufficient number of break points, any continuous 

function can be arbitrarily well approximated by a linear spline function. See Poirier (1976) for applications 

of regression models using splines. 



 33 

We leave the further analysis of this model to the reader after noting that in order to obtain a 

unique solution to (108), we require a normalization on the t and 0 such as 1 = 0. 

 

It is not necessary to restrict ourselves to hedonic regression models where the hedonic valuation 

function g(z,y) is such that lng(z,y) is linear in the unknown parameters. One can choose 

functions g(z,y) such that lng(z,y) is a nonlinear function of the unknown parameters and use 

nonlinear estimation techniques to estimate the parameters. However, when estimating nonlinear 

regression models that are fairly complex, it is not wise to attempt to estimate the final model 

right away. It is best if there are very simple models that can be nested in the final model so that 

one starts by estimating the simplest model and gradually, more bells and whistles are added until 

one arrives at the final model. The final parameter values for a simpler model should be used as 

starting parameter values in the next stage model if possible.72 

 

All of the models for quality adjustment that we have considered thus far have assumed constant 

tastes; i.e., the functional form for the aggregator function f(q) and for the hedonic valuation 

functions g(zn,yn,xn) have remained constant over the sample period. In the following section, this 

assumption will be relaxed.  

 

8. Hedonics and the Problem of Taste Change: Hedonic Imputation Indexes 

 

A problem with hedonic regression models that are applied over many periods is that consumer 

tastes may change over time. In this section, we will outline three possible methods for dealing 

with the problem of taste change.  

 

The first method that could be used to deal with taste change is to restrict the time dummy 

hedonic regression models to the case of two adjacent periods. Each pair of periods allows for a 

different set of tastes.73 As each adjacent period time dummy regression model is run for say 

periods t−1 and t, the estimated price level ratio, say t
*/t−1

*, is used as an update factor for the 

price level of period t−1. Each bilateral regression will generate a set of quality adjustment factors 

which can be used to fill in missing prices. Over time, these quality adjustment factors will 

change. It can be seen that this model of taste change is somewhat inconsistent over time but it 

does allow for taste change. 

 

The second method for dealing with taste change is similar to the first method, except instead of 

holding tastes constant for 2 consecutive periods, we hold tastes constant for T consecutive 

periods. When the data for a subsequent period becomes available, the data for the first period is 

dropped, the data for the new period is added to form a new window of T observations and a new 

time dummy hedonic regression is run. This method assumes that tastes change more slowly than 

the first method. This rolling window time dummy hedonic regression model 74  has a new 

problem which did not arise with the adjacent period model: how should the results of the new 

regression be linked to the results of the previous regression? Thus suppose the first window of 

observations generates the sequence of price levels, 1
1, 2

1,..., T
1 and these levels are labelled as 

official indexes for the first T periods. Suppose the time dummy hedonic regression for the 

 
72 For examples of nonlinear hedonic models that make use of this nesting technique, see Chapter 10 or 

Diewert, Haan and Hendricks (2015), Diewert and Shimizu (2015) (2016) (2020) or Diewert, Huang and 

Burnett-Issacs (2017). 
73 This method is due to Court (1939) and popularized by Griliches (1971). It is called the adjacent period 

time dummy hedonic regression model. 
74 This rolling window time dummy hedonic model was implemented by Ivancic, Diewert and Fox (2009) 

and Shimizu, Nishimura and Watanabe (2010).  
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second window generates the sequence of price levels 2
2, 3

2,..., T+1
2. How exactly should the 

official index for period T+1 be constructed?  Ivancic, Diewert and Fox (2009) (2011) suggested 

using period T as the linking observation. Krsinich (2016; 383) called this the movement splice 

method for linking the two windows. Krsinich (2016; 383) also suggested that a better choice of 

the linking observation in the context of her multilateral model was t = 2 and she called this the 

window splice method. De Haan (2015; 26) suggested that the link period t should be chosen to 

be in the middle of the first window time span; i.e., choose t = T/2 if T is an even integer or t = 

(T+1)/2 if T is an odd integer. The Australian Bureau of Statistics (2016; 12) called this the half 

splice method for linking the results of the two windows. Ivancic, Diewert and Fox (2011; 33) 

and Diewert and Fox (2017; 18) argued that each choice of a linking period t running from t = 2 

to t = T is an equally valid choice of a period to link the two sets of price levels. Thus they 

suggested the mean splice, defined as the geometric mean of all of the possible estimates for T+1 

using each of the T−1 possible link periods. The first 3 methods of linking one window to the 

next window are easy to explain to the public but the mean splice seems to be the least “risky” 

and follows standard statistical practice; i.e., if one has many estimators for the same thing that 

are equally plausible, then taking an average of these estimators is recommended. It can be seen 

that this model of taste change is again slightly inconsistent; the models are internally consistent 

within each window of observations but when we move from one window to another, this internal 

consistency is lost.  

 

The third method for dealing with taste change is to simply estimate a separate hedonic regression 

for each time period. This method is called the hedonic imputation method. In order to explain 

this method and its connection to the adjacent period time dummy model, it is necessary to 

develop the algebra for both methods for the case of two time periods.  

 

We first develop the algebra for the adjacent period time dummy hedonic regression model. 

Recall the model defined in the previous section by solving the weighted least squares 

minimization problem defined by (84). Consider the special case of this model with only two 

periods so that T = 2. We reparameterize this problem defined by (84) for the case T = 2 and 

consider the following equivalent problem: 

 

(109) min ,  t=1
2 nS(t) stn[lnptn − t − k=1

K kznk]2 

 

where   [1,2] and   [1,...,K]. Comparing (109) with (84) for T = 2, it can be seen that 1 = 

1 + 0 = 0 (since we set 1 = 0 when using the model defined by (84)) and 2 = 2 + 0. Thus the 

two problems are completely equivalent once we impose the normalization 1 = 0 on (84) for the 

case where T = 2. The first order conditions which determine a unique solution to (109)75 are the 

following 2 + K equations: 

 

(110) nS(t) stn[lnptn − t
* − k=1

K k
*znk] = 0 ;                                                                    t = 1,2; 

(111) t=1
2 nS(t) stn[lnptn − t

* − k=1
K k

*
 znk]znk = 0 ;                                                       k = 1,...,K. 

       

Denote the solution to (110) and (111) by *  [1
*,2

*] and *  [1
*,...,K

*]. Estimates for the 

parameters 0 and 2 which were used in our initial parameterization of the model defined by (84) 

for the case where T = 2 can be recovered from the solution to (110) and (111) as follows:76 

 
75 As usual, the coefficient matrix for the unknown parameters in equations (110) and (111) must be of full 

rank (which is K + 2), in order to obtain a unique solution. This means that the number of observations 

must be equal to or greater than K + 2.  
76 The new k

* are equal to the old k
* for k = 1,...,K. 
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(112) 0
*  1

*; 1
*  0; 2

*  2
* − 1

*.  

 

The estimated quality adjustment parameters, n
* and n

*, for the model defined by (84) can be 

recovered from the estimated t
* and k

* by using the equations n
*  1

*+ k=1
K k

*znk ; n
*  

exp[n
*] for n = 1,...,N. 

 

However, for the remainder of this section, it will prove to be more convenient to define new 

quality adjustment parameters, n
** and n

**, as follows: 

 

(113) n
**  k=1

K k
*znk ; n

**  exp[n
**] ;                                                                        n = 1,...,N. 

 

Equations (110), definitions (113) and the equations nS(t) stn = 1 for each t imply that the 

estimated 1
* and 2

* satisfy the following equations: 

 

(114) t
* = nS(t) stn[lnptn − k=1

K k
*znk]                                                                                  t = 1,2; 

              = nS(t) stnln(ptn/n
**). 

 

Using equations (112) and (113), we obtain the following expressions for 2
* which is the 

logarithm of the price index 2
*/1

* generated by the time dummy adjacent period hedonic 

regression model:77 

 

(115) ; 2
*  2

* − 1
* 

                  = nS(2) s2nln(p2n/n
**) − nS(1) s1nln(p1n/n

**) 

                  = nS(2) s2n[lnp2n − k=1
K k

*znk] − nS(1) s1n[lnp1n − k=1
K k

*znk]. 

    

This completes the algebra for the reparameterization of the time dummy adjacent period hedonic 

regression model. In what follows, we will develop the algebra for entirely separate hedonic 

regression models for each period. In the above model, the hedonic surfaces for the two periods,  

1
* + k=1

K k
*znk and 2

* + k=1
K k

*znk, differed only in their constant terms. In the following 

model, the hedonic surfaces can shift in a non-parallel fashion. 

 

Consider the following two weighted least squares minimization problems: 

 

(116) min ,  nS(1) s1n[lnp1n − 1 − k=1
K k

1znk]2 ; 

(117) min ,  nS(2) s2n[lnp2n − 2 − k=1
K k

2znk]2  

 

where the unknown parameters in (116) are 1, 1  [1
1,...,K

1] and the unknown parameters in 

(117) are 2, 2  [1
2,...,K

2]. In the previous model defined by (109), there was only one vector of 

 parameters to model prices in both periods while the new models defined by (116) and (117) 

have separate quality adjustment parameter vectors, 1 and 2.  

 

The first order conditions for (116) are equations (118) and (119), while the first order conditions 

for (117) are equations (120) and (121) below: 
 

77 If the model defined by (109) held exactly so that all error terms were equal to 0, then lnp1n = 1
* + lnn

** 

for nS(1) and lnp2n = 2
* + lnn

** for nS(2). Thus p1n/n
** = exp[1

*] for each nS(1) and p2n/n
** = 

exp[2
*] for each nS(2). Thus each quality adjusted period t price, ptn/n

** for nS(t), is an estimator for 

exp[t
*] and thus a weighted geometric mean of these quality adjusted prices (where the weights sum to 1) 

is also an estimator for exp[t
*].       
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(118) nS(1) s1n[lnp1n − 1* − k=1
K k

1*znk] = 0 ;      

(119) nS(1) s1n[lnp1n − 1* − k=1
K k

1*znk]znk = 0 ;                                                            k = 1,...,K;    

(120) nS(2) s2n[lnp2n − 2* − k=1
K k

2*znk] = 0 ;      

(121) nS(2) s2n[lnp2n − 2* − k=1
K k

2*znk]znk = 0 ;                                                            k = 1,...,K.    

 

Let 1*, 1
1*,..., K

1* solve (118) and (119) and let 2*, 1
2*,..., K

2* solve (120) and (121). There are 

now two sets of quality adjustment factors: 1
1*,..., N

1* for period 1 and 1
2*,..., N

2* for period 2. 

The logarithms of these parameters are defined as follows: 

 

(122) lnn
1*  k=1

K k
1*znk ; lnn

2*  k=1
K k

2*znk ;                                                           n = 1,...,N.                              

 

Using (118), (120) and definitions (122), we obtain the following expressions for 1* and 2* as 

quality adjusted log prices for periods 1 and 2:  

 

(123) 1* = nS(1) s1nln(p1n/n
1*) = nS(1) s1n[lnp1n − k=1

K k
1*znk] ; 

(124) 2* = nS(2) s2nln(p2n/n
2*) = nS(2) s2n[lnp2n − k=1

K k
2*znk] . 

 

The average measure of log price change going from period 1 to 2 using the adjacent period time 

dummy hedonic model was 2
* = 2

* − 1
*; see (115) above. Note that the same quality 

adjustment factors, the n
*, were used to quality adjust prices in both periods. At first glance, we 

might think that an analogous measure of average constant quality log price in our new model 

could be defined as 2* − 1*. However, looking at (123) and (124), we see that the quality 

adjustment factors are not held constant in constructing this measure. The underlying exact 

models are now p1n = exp[1*]n
1* for nS(1) and p2n = exp[2*]n

2* for nS(2). Thus the period 

1 quality adjusted prices, p1n/n
1*, are not comparable to their period 2 counterparts, p2n/n

2*, 

unless n
1* = n

2*. Hence 2
*/1

* is not a useful price index that compares like with like.  

 

At this point, the analysis could go in at least 3 different directions: 

 

• Use the two hedonic regressions to fill in the missing prices; i.e., if nS(1) but 

nS(2), define p2n  exp[2*]n
2* and q2n = 0. If nS(2) but nS(1), define p1n  

exp[1*]n
1* and q1n = 0. Using these estimated prices, we would have complete 

overlapping price and quantity data for the two periods. Now use the actual data 

along with the imputed data to calculate a favourite price index and define the 

companion quantity index residually by deflating the value ratio by the price index. 

The problem with this strategy is that the quantity index that emerges using this 

strategy cannot be given a welfare interpretation because preferences are allowed to 

change over the two periods.   

• A product or model with characteristics vector z*  [z1
*,...,zK

*] should have a log 

price which is approximately equal to 1* + k=1
K k

1*zk
*  lnp1* in period 1 and a log 

price which is approximately equal to 2* + k=1
K k

2*zk
*  lnp2* in period 2. Choose 

z* to be a characteristics vector that is representative for the set of products that exist 

in periods 1 and 2. Then the exponential of ln(p2*/p1*) = 2* − 1* + k=1
K (k

2* − 

k
1*)zk

* can serve as a measure of average logarithmic inflation over the period. The 
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problem with this method is that there are many possible choices for the reference 

vector z*.78  

• Use each set of quality adjustment factors to generate two consistent measures of 

inflation over the two periods and then take the average of the two measures. 

 

In what follows, we will work out the algebra for the third alternative.79 Let 1* be the share 

weighted average of the quality adjusted log prices for period 1, p1n/n
2*, using the period 2 

quality adjustment factors n
2* defined in definitions (122) and let 2* be the share weighted 

average of the quality adjusted log prices for period 2, p2n/n
1*, using the period 1 quality 

adjustment factors n
1* defined in definitions (122): 

 

(125) 1*  nS(1) s1nln(p1n/n
2*) ; 2*  nS(2) s2nln(p2n/n

1*) . 

 

It can be seen that 2* − 1* is a constant quality measure of overall log price change which uses 

the quality adjustment factors n
2* for period 2 to deflate prices in both periods. Similarly, 2* − 

1* is a constant quality measure of overall log price change which uses the quality adjustment 

factors n
1* for period 1 to deflate prices in both periods. It is natural to take the arithmetic mean 

of these two measures of constant quality log price change in order to obtain the following 

counterpart, 2
**, to the adjacent period time dummy measure of constant quality log price 

change, 2
* defined by (115) above.    

 

(126) 2
**  ½[2* − 1*] + ½[2* − 1*] 

                 = ½[nS(2) s2nln(p2n/n
2*) − nS(1) s1nln(p1n/n

2*)]  

                    + ½[nS(2) s2nln(p2n/n
1*) − nS(1) s1nln(p1n/n

1*)]                     using (123)-(125) 

                 = nS(2) s2n[lnp2n − ½(lnn
1* + lnn

2*)] 

                     − nS(1) s1n[lnp1n −  ½(lnn
1* + lnn

2*)]  

                 = nS(2) s2n[lnp2n − k=1
K (½k

1* + ½k
2*)znk] 

                     − nS(1) s1n[lnp1n −k=1
K (½k

1* + ½k
2*)znk]                             using definitions (122).  

 

Using (115), 2
* can be expressed as follows: 

 

(127) 2
* = nS(2) s2n[lnp2n − k=1

K k
*znk] − nS(1) s1n[lnp1n −k=1

K k
*znk]. 

 

The time dummy hedonic regression model defined by the minimization problem (109) uses the 

hedonic coefficients, k
* for k = 1,..,K to form the quality adjustment factors n

* for n = 1,...,N. 

The single period hedonic regressions are defined by the minimization problems defined by (116) 

and (117), which in turn generate the two sets of hedonic coefficients, the k
1* and the k

2* for k = 

1,..,K. But in the end, these two sets of hedonic coefficients are averaged when the overall 

measure of log price change defined by 2
** is calculated. Thus the only difference between 2

* 

defined by (115) or (127) and 2
** defined by (126) is that the average hedonic coefficients ½k

1* 

+ ½k
2* are used in (126) while 2

* uses the single set of coefficients k
*. Thus (127) lets the single 

regression do the job of constructing a set of hedonic coefficients that covers both periods while 

(126) averages the results of the two single period regressions.   

 

 
78 Note that if 1* happens to equal 2*, then ln(p2*/p1*) = 2* − 1* and 2* − 1* turns out to equal 2

* 

defined by (115). 
79 The analysis which follows is due to Silver and Heravi (2007), Diewert, Heravi and Silver (2009) and de 

Haan (2009). For additional materials on hedonic imputation methods, see Aizcorbe (2014). 
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Which approach is “better”? The hedonic imputation approach requires the estimation of 2 + 2K 

parameters, while the adjacent period time dummy hedonic approach requires only 2 + K 

parameters. Thus if the number of price observations in the two periods is plentiful, then the 

hedonic imputation approach will fit the data better and thus, in general, will be the preferred 

approach. However, if the number of observations is small and K is relatively large, then the 

adjacent period time dummy approach may be less vulnerable to multicollinearity and outlier 

problems and hence may be the preferred approach.80 In particular, if the number of observations 

for the two periods is less than 2 + 2K, then the hedonic imputation approach cannot be used. On 

the other hand, if the fit is very good in the two weighted least squares minimization problems 

defined by (115) and (116) (and there are ample degrees of freedom) and not good in the single 

weighted least squares minimization problem defined by (109), then it is preferable to estimate 

price change between the two periods using the hedonic imputation estimates for logarithmic 

price change defined by (126), since this difference in fit for the two models is evidence of taste 

change and thus it will be safer to use (126) over (127) to measure price change.                         

 

A problem with all of the hedonic regression models that we have considered thus far is that the 

underlying economic model is quite restrictive; i.e., the underlying exact model is ptn = tn 

which implies that purchasers of the products have linear preferences over the N products under 

consideration.81 Linear preferences mean that the quality adjusted products are perfect substitutes 

for each other. In the following two sections, we will consider economic models which relax this 

assumption of perfect substitutes. 

 

9. Estimating Reservation Prices: The Case of CES Preferences 

 

In this section, we will explain Feenstra’s (1994) Constant Elasticity of Substitution (CES) 

methodology that he proposed to measure the benefits and costs to consumers due to the 

appearance of new products and the disappearance of existing products.82  

 

The Feenstra methodology starts out by making the same assumptions as were made in section 2; 

i.e., it is assumed that purchasers of a group of N products collectively maximize the linearly 

homogeneous, concave and nondecreasing aggregator or utility function f(q) subject to a budget 

constraint. Given that purchasers face the positive vector of prices p  (p1,...,pN), the unit cost 

function c(p) that is dual to the utility function f is defined as the minimum cost of attaining the 

utility level that is equal to one: 

 

(128) c(p)  min q{f(q)  1; q  0N}. 

 

 
80 “In practice, while one may want to use the most recent cross section to derive the relevant price weights, 

such estimates may fluctuate too much for comfort as the result of multicollinearity and sampling 

fluctuations. They should be smoothed in some way, either by choosing wi = (1/2)[wi(t) + wi(t+1)], or by 

using adjacent year regressions in estimating these weights.” Zvi Griliches (1971; 7). Thus Griliches 

suggested the time dummy approach if the separate hedonic regressions led to substantial fluctuation in the 

parameter estimates.   
81 This criticism of hedonic regression models is similar to that of Hausman (2003; 32): “In the presence of 

the introduction of new goods and quality improvement of existing goods, both prices and quantities (or 

alternatively, prices and expenditures) must be used to calculate a correct cost of living index. Using only 

prices and ignoring information in quantity data will never allow for a correct estimate of a cost of living 

index in the presence of new goods and improvements in existing goods.” However, if the fit of a hedonic 

regression model is good, then the hedonic regression model is justified and there is no need to move to a 

more complicated consumer demand framework.    
82 The exposition in this section follows that of Diewert and Feenstra (2017). 
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If the unit cost function c(p) is known, then using duality theory, it is possible to recover the 

underlying utility function f(q).83 Feenstra assumed that the unit cost function has the following 

CES functional form: 

 

(129) c(p)  0 [n=1
N npn

1−]1/(1−)          if   1; 

                   0 n=1
N n

np


                       if  = 1 

 

where the i and  are nonnegative parameters with i=1
N i = 1.  The unit cost function defined 

by (129) is a Constant Elasticity of Substitution (CES) utility function which was introduced into 

the economics literature by Arrow, Chenery, Minhas and Solow (1961)84.  

 

The parameter  is the elasticity of substitution;85 when  = 0, the unit cost function defined by 

(129) becomes linear in prices and hence corresponds to a fixed coefficients aggregator function 

which exhibits 0 substitutability between all commodities. When  = 1, the corresponding 

aggregator or utility function is a Cobb-Douglas function. When  approaches +, the 

corresponding aggregator function f approaches a linear aggregator function which exhibits 

infinite substitutability between each pair of inputs. The CES unit cost function defined by (129) 

is of course not a fully flexible functional form (unless the number of commodities being 

aggregated is N = 2) but it is considerably more flexible than the zero substitutability aggregator 

function (this is the special case of (129) where  is set equal to zero) or the linear aggregator 

function (which corresponds to  = +).  

 

In order to simplify the notation, we set r  1 − . Under the assumption of cost minimizing 

behavior on the part of purchasers of the N products for periods t = 1,...,T, Shephard’s (1953; 11) 

Lemma tells us that the observed period t consumption of commodity i, qi
t, will be equal to 

utc(pt)/pi where c(pt)/pi is the first order partial derivative of the unit cost function with 

respect to the ith commodity price evaluated at the period t prices and ut = f(qt) is the aggregate 

(unobservable) level of period t utility. As usual, denote the share of product i in total sales of the 

N products during period t as sti  ptiqti/ptqt for i = 1,...,N and t = 1,...,T where ptqt  n=1
N ptnqtn. 

We initially assume that there are no missing products. Note that the assumption of cost 

minimizing behavior during each period implies that the following equations will hold: 

 

(130) ptqt = utc(pt) ;                                                                                                             t = 1,...,T 

 

where c is the CES unit cost function defined by (129).   

 

 
83 It can be shown that for q >> 0N, f(q) = 1/max p {c(p): n=1

N pnqn  1 ; p  0N}; see Chapter 5 or Diewert 

(1974; 110-112)  on the duality between linearly homogeneous aggregator functions f(q) and unit cost 

functions c(p). 
84 In the mathematics literature, this aggregator function or utility function is known as a mean of order r  

1 − ; see Hardy, Littlewood and Pólya (1934; 12-13). For more on estimating CES utility functions, see 

Chapter 5. 
85 Let c(p) be an arbitrary unit cost function that is twice continuously differentiable. The Allen (1938; 504) 

Uzawa (1962) elasticity of substitution nk(p) between products n and k is defined as c(p)cnk(p)/cn(p)ck(p) 

for n  k where the first and second order partial derivatives of c(p) are defined as cn(p)  c(p)/pn and 

cnk(p)  2c(p)/pnpk. For the CES unit cost function defined by (129), nk(p) =  for all pairs of products; 

i.e., the elasticity of substitution between all pairs of products is a constant for the CES unit cost function.        
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Using the CES functional form defined by (129) and assuming that   1 (or r  0),86 the 

following equations are obtained using Shephard’s Lemma: 

 

(131) qti = ut0 [n=1
N n (ptn) 

r](1/r)−1i (pti)r−1;                                                     i = 1,…,N; t =1,...,T 

              = utc(pt) i (pti)r−1/n=1
N n (ptn) 

r .                     

 

Premultiply equation i for period t in (131) by pti/ptqt. Using (129) and (131), the resulting 

equations can be rewritten as follows: 

 

(132)  sti = i (pti)r/n=1
N n (ptn)r ;                                                                     i = 1,…,N; t = 1,...,T.  

 

The NT share equations defined by (132) can be used as estimating equations using a nonlinear 

regression approach. Note that the positive scale parameter 0 cannot be identified using 

equations (132), which of course is normal: utility can only be estimated up to an arbitrary scaling 

factor. Henceforth, we will assume 0 = 1. The share equations (132) are homogeneous of degree 

one in the parameters 1,...,N and thus the identifying restriction on these parameters, i=1
N i = 

1, can be replaced with an equivalent restriction such as N = 1. 

 

The sequence of period t CES price indexes (relative to the level of prices for period 1), PCES
t, can 

be defined as the following ratios of unit costs in period t relative to period 1: 

 

(133) PCES
t  [n=1

N n (ptn) 
r](1/r) / [n=1

N n (p1n) 
r](1/r) ;                                                       t = 1,...,T. 

 

Suppose further that the observed price and quantity data vectors, pt and qt for t = 1,...,T, satisfy 

equations (130) where c(p) is defined by (129) and the quantity data vectors qt satisfy the 

Shephard’s Lemma equations (131). This means that the observed price and quantity data are 

consistent with cost minimizing behavior on the part of purchasers where all purchasers have 

CES preferences that are dual to the CES unit cost function defined by (129). Then Sato (1976) 

and Vartia (1976) showed that the sequence of CES price indexes defined by (133) could be 

numerically calculated just using the observed price and quantity data; i.e., it is not necessary to 

estimate the unknown n and  (or r) parameters in equations (132).87 The logarithm of the period 

t fixed base Sato-Vartia Index PSV
t is defined by the following  equation: 

 

(134) lnPSV
t  n=1

N wn
t ln(ptn/p1n) ;                                                                                     t = 1,...,T. 

 

The weights wn
t that appear in equations (134) are calculated in two stages. The first stage set of 

weights is defined as wn
t*  (stn − s1n)/(lnstn − lns1n) for n = 1,...,N and t = 1,...,T provided that stn  

s1n. If stn = s1n, then define wn
t*  stn = s1n. The second stage weights are defined as wn

t  wn
t*/i=1

N 

wi
t*  for n = 1,...,N and t = 1,...,T. Note that in order for lnPSV

t to be well defined, we require that 

stn > 0, s1n > 0, ptn > 0 and p1n > 0 for all n = 1,...,N and t = 1,...,T; i.e., all prices and quantities 

must be positive for all products and for all periods.       

 

With this background information in hand, we can explain Feenstra’s (1994) model where “new” 

commodities can appear and “old” commodities can disappear from period to period.   

 
86 When  = 1, we have the case of Cobb-Douglas preferences. In the remainder of this section, we will 

assume that  > 1 (or equivalently, that r < 0). This assumption means that the products under consideration 

are either highly substitutable ( is considerably greater than one) or moderately substitutable ( is greater 

than one but fairly close to one). 
87 See Chapter 5 for a proof of this result. 
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Feenstra (1994) assumed CES preferences with  > 1 (or equivalently, r < 0). He applied the 

reservation price methodology first introduced by Hicks (1940); i.e., as mentioned earlier, Hicks 

assumed that the consumer had preferences over all goods, but for the goods which had not yet 

appeared, there was a reservation price that would be just high enough that consumers would not 

want to purchase the good in the period under consideration.88 This assumption works rather well 

with CES preferences, because we do not have to estimate these reservation prices; they will all 

be equal to + when  > 1.  

 

Feenstra allowed for new products to appear and for existing products to disappear from period to 

period.89 Feenstra assumed that the set of commodities that are available in period t is S(t) for t = 

1,...,T. The (imputed) prices for the unavailable commodities in each period are set equal to + 

and thus if r < 0, an infinite price ptn raised to a negative power generates a 0; i.e., if product n is 

unavailable in period t, then (ptn)r = ()r = (1/)−r = 0 if r is negative. 

 

The CES period t true price level under these conditions when r < 0 turns out to be the following 

CES unit cost function that is defined over only products that are available during period t: 

 

(135) c(pt)  [n=1
N n (ptn) 

r](1/r)  = [nS(t) n (ptn)r]1/r . 

 

Using equations (131) for this new model with some missing products and multiplying the period 

t demand qti if product i is present in period t by the corresponding price pti leads to the following 

equations which describe the purchasers’ nonzero expenditures on product i in period t:   

 

(136) ptiqti = ut
 [nS(t) n (ptn) 

r](1/r)−1i (pti)r ;                                                            t = 1,...,T; iS(t)                                         

                  = utc(pt) i (pti)r/nS(t) n (ptn)r .  

 

In each period t, the sum of observed expenditures, nS(t) ptnqtn, equals the period t utility level, 

ut, times the CES unit cost c(pt) defined by (135): 

 

(137) nS(t) ptn
 qtn = utc(pt) = ut[iS(t) i (pti)r]1/r ;                                                              t = 1,...,T. 

 

Recall that the ith sales share of product i in period t was defined as sti  ptiqti/nS(t) ptnqtn for t = 

1,...,T and iS(t). Using these share definitions and equations (137), we can rewrite equations 

(136) in the following form: 

 

(138) sti = i (pti)r/nS(t) n (ptn)r ;                                                                            t = 1,...,T; iS(t) 

              = i (pti)r/c(pt)r 

 

where the second set of equations follows using definitions (135).                                                                                                                               

 

Now we can work out Feenstra’s (1994) model for measuring the benefits and costs of new and 

disappearing commodities. Start out with the period t CES exact price level defined by (135) and 

 
88 The same logic is applied to disappearing products. 
89 In many cases, a “new” product is not a genuinely new product; it is just a product that was not in stock 

in the previous period. Similarly, in many cases, a disappearing product is not necessarily a truly 

disappearing product; it is simple a product that was not in stock for the period under consideration. Many 

retail chains rotate products, temporarily discontinuing some products in favour of competing products in 

order to take advantage of manufacturer discounted prices for selected products.    
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define the CES fixed base price index for period t, PCES
t, as the ratio of the period t CES price 

level to the corresponding period 1 price level:90 

 

(139) PCES
t  c(pt)/c(p1) ;                                                                                                   t = 2,3,...,T  

                 = [iS(t) i (pti)r]1/r / [iS(1) i (p1i) 
r]1/r  

                 = [ Index 1][Index 2][Index 3] 

 

where the three indexes in equations (139) are defined as follows:91 

 

(140) Index 1  [iS(t)S(1) i (pti)r]1/r / [iS(1)S(t) i (p1i) 
r]1/r ;                                        t = 2,3,...,T; 

(141) Index 2  [iS(t) i (pti)r]1/r / [iS(1)S(t) i (pti) 
r]1/r ;                                               t = 2,3,...,T 

(142) Index 3  [iS(1)S(t) i (p1i)r]1/r / [iS(1) i (p1i) 
r]1/r ;                                             t = 2,3,...,T. 

 

Note that Index 1 defines a CES price index over the set of commodities that are available in both 

periods t and 1. Denote the CES cost function ct* that has the same n parameters as before but is 

now defined over only products that are available in periods 1 and t: 

 

(143) ct*(p)  [iS(t)S(1) i (pi)r]1/r ;                                                                                 t = 1,2,...,T. 

 

The period t expenditure share equations defined by equations (138) using the unit cost functions 

defined by (143) are the following ones: 

 

(144) si
t*  ptiqti/nS(t) S(1) ptnqtn                                                                    t = 1,...,T; iS(1)S(t) 

             = i (pti)r/nS(t) S(1) n (ptn) 
r 

             = i (pti)r/ct*(pt)r  

 

where the third equality follows using definitions (143). 

 

Note that Index 1 is equal to ct*(pt)/ct*(p1) and the Sato-Vartia formula (134) (restricted to 

commodities n that are present in periods 1 and t) can be used to calculate this index using the 

observed price and quantity data for the products that are available in both periods 1 and t. 

 

We turn now to the evaluation of Indexes 2 and 3. It turns out that we will need an estimate for 

the elasticity of substitution  (or equivalently of r  1−) in order to find empirical expressions 

for these indexes.92  It is convenient to define the following observable expenditure or sales 

ratios: 

 

(145) t  nS(t) ptnqtn/nS(1)S(t) ptnqtn ;                                                                          t = 2,3,...,T;  

(146) t  nS(1)S(t) p1nq1n/nS(1) p1n
 q1n ;                                                                       t =2,3,... T. 

 

We assume that there is at least one product that is present in periods 1 and t for each t  2. Let 

product i be any one of these common products for a given t  2. Then the share equations (138) 

 
90 In the algebra which follows, the prices and quantities of period 1 can be replaced with the prices and 

quantities of any period. Feenstra (1994) developed his algebra for c(pt)/c(pt−1). 
91 The Indexes 1-3 depend on period t but we suppressed the index t from the left hand side of definitions 

(140)-(142). 
92 See Chapter 5 or Diewert and Feenstra (2017) for a variety of methods for estimating the elasticity of 

substitution. 



 43 

and (144) hold for this product. These share equations can be rearranged to give us the following 

two sets of equations: 

 

(147) i(pti)r = [nS(t) n (ptn)r]ptiqti/[nS(t) ptnqtn] ;                                                         t = 2,3,...,T; 

(148) i(pti)r = [nS(1)S(t) n (ptn)r]ptiqti/[nS(1)S(t) ptnqtn] ;                                            t = 2,3,...,T. 

 

For each t  2, equating (147) to (148) for the common product i leads to the following equations: 

 

(149) nS(t) n (ptn)r/nS(1)S(t) n (ptn)r = nS(t) ptnqtn/nS(1)S(t) ptnqtn ;                        t = 2,3,...,T; 

                                                                = t 

 

where the second set of equalities follows using definitions (145). Now take the 1/r root of both 

sides of (149) and use definitions (141) in order to obtain the following equalities:   

 

(150) Index 2 = [t]1/r = [iS(t) pti
 qti/iS(1)S(t) ptiqti]1/r ;93                                               t = 2,3,...,T.                           

 

Again assume that product i is available in periods 1 and t  2. Rearrange the share equations 

(138) and (144) for t = 1 and product i and we obtain the following two equations: 

 

(151) i(p1i)r = [nS(1) n (p1n)r] p1iq1i/[nS(1) p1nq1n] ;                                                   t = 2,3,...,T; 

(152) i(p1i)r = [nS(1)S(t) n (p1n)r] p1iq1i/[nS(1)S(t) p1nq1n] ;                                       t = 2,3,...,T. 

 

Equating (151) to (152) leads to the following equations: 

 

(153) nS(1)S(t) n (p1n)r/nS(1) n (p1n)r = nS(1)S(t) p1nq1n/nS(1) p1nq1n ;                   t = 2,3,...,T; 

                                                                 = t 

 

where the last set of equalities follows using definitions (146). Now take the 1/r root of both sides 

of (153) and use definitions (143) in order to obtain the following equalities:94   

 

(154) Index 3 = [t]1/r = [nS(1)S(t) p1nq1n/nS(1) p1nq1n]1/r ;                                           t = 2,3,...,T. 

 

Thus if r is known or has been estimated, then Index 2 and Index 3 can readily be calculated as 

simple ratios of sums of observable expenditures raised to the power 1/r. Note that [iS(t) 

 
93 If new products become available in period t that were not available in period 1, then  t > 1. Recall that r 

= 1 −  and r < 0. Index 2 evaluated at period t prices equals (t)1/r = (t)1/(1−) and thus is an increasing 

function of  for 1 <  < +. With t > 1, the limit of (t)1/(1−) as  approaches 1 from above is 0 and the 

limit of (t)1/(1−) as  approaches + is 1. Thus the gains in utility from increased product variety are huge 

if  is slightly greater than 1 and diminish to tiny gains as  becomes very large. Suppose that t =1.05 and 

 = 1.01, 1.1, 1.5, 2, 3, 5, 10 and 100. Then Index 2 will equal 0.0076, 0.614, 0.907, 0.952, 0.976, 0.988, 

0.995 and 0.9995 respectively. Thus the gains from increased product variety are very sensitive to the 

estimate for the elasticity of substitution. The gains are gigantic if  is close to 1.  
94 If some products that were available in period 1 become unavailable in period t, then  t < 1. Index 3 

evaluated at period 1 prices equals (t)1/r = (t)1/(1−) and is a decreasing function of  for 1 <  < +. With 

t < 1, the limit of (t)1/(1−) as  approaches 1 is + and the limit of (t)1/(1−) as  approaches + is 1. 

Thus the losses in utility from decreased product variety are huge if  is slightly greater than 1 and 

diminish to tiny gains as  becomes very large. Suppose that t =0.95 and  takes on the same values as in 

the previous footnote. Then Index 3 will equal 168.9, 1.670, 1.108, 1.053, 1.026, 1.013, 1.0057 and 

1.00052 respectively. Thus the losses are gigantic if  is close to 1 and negligible if  is very large. 
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ptiqti/iS(1)S(t) ptiqti]  1. If period t has products that were not available in period 1, then the 

strict inequality will hold and since 1/r < 0, it can be seen that Index 2 will be less than unity. 

Thus Index 2 is a measure of how much the true cost of living index is reduced in period t due to 

the introduction of products that were not available in period 1. Similarly, [iS(1)S(t) p1iq1i/iS(1) 

p1iq1i]  1. If period 1 has products that are not available in period t, then the strict inequality will 

hold and since 1/r < 0, it can be seen that Index 3 will be greater than unity, Thus Index 3 is a 

measure of how much the true cost of living index has increased in period t due to the 

disappearance of products that were available in period 1 but are not available in period t.  

 

Turning briefly to the problems associated with estimating r (and the n) when not all products 

are available in all periods, it can be seen that the initial estimating share equations (132) need to 

be replaced by the estimating equations (138). However, there are many methods that have been 

suggested in the literature to estimate r (or the elasticity of substitution ) when there are missing 

products; see for example Diewert and Feenstra (2017) or the extensive discussion of estimation 

issues in Chapter 5. 

 

The Feenstra methodology is easy to implement once an estimate for  is available and so it has 

been widely used in the macroeconomic literature. However, if the elasticity of substitution is low 

and new products outnumber disappearing products, then this methodology will lead to quality 

adjusted price indexes which will decrease by amounts that are not plausible and this point should 

be kept in mind.95 The Feenstra methodology will tend to be biased for elasticities of substitution 

which are close to one and should not be used in this case.96 Thus in the next section, we will 

study a model which is similar to Feenstra’s model but the reservation prices generated by the 

model are finite and a flexible functional form for f(q) is used in place of the CES functional 

form.  

 

10. Estimating Reservation Prices: The Case of KBF Preferences 

 

The functional form for the aggregator function f(q) that we will use in this section is the KBF 

function form, fKBF(q)  [qAq]1/2 defined by (17) in section 4.97 The system of inverse demand 

functions for this functional form for our data set with no missing observations is given by the 

following system of equations:  

 

(155) pt = Pt qfKBF(qt) = Pt [qtAqt]−1/2 Aqt ;                                                                      t = 1,...,T 

 

where the N by N matrix A  [ank] is symmetric (so that AT = A) and thus has N(N+1)/2 unknown 

ank elements. As in section 4, we also assume that A has one positive eigenvalue with a 

corresponding strictly positive eigenvector and the remaining N−1 eigenvalues are negative or 

zero. These conditions will ensure that the aggregator function has indifference surfaces with the 

correct curvature. 

 

 
95 Also keep in mind that the Feenstra methodology does not work at all if the elasticity of substitution is 

equal to or less than one. 
96 Another feature of the Feenstra methodology is that the reservation prices are infinite. Typically, it does 

not take an infinitely high price to deter consumers from buying the product under consideration. 
97 The analysis in this section follows that of Diewert and Feenstra (2017). The same theoretical framework 

was suggested by Diewert (1980; 498-503) but a different flexible functional form was used to illustrate the 

methodology. The Diewert and Feenstra functional form is a better choice since the correct curvature 

conditions can be imposed on the KBF functional form without destroying its flexibility. 
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The period t aggregate price level is Pt and the corresponding aggregate quantity level is Qt  

[qtAqt]1/2 for t = 1,...,T. Multiply the right hand side of equation t in (155) by 1 = Qt/[qtAqt]1/2 for 

t = 1,...,T and we obtain the following system of estimating equations: 

 

(156) pt = PtQtAqt/qtAqt = vtAqt/qtAqt ;                                                                              t = 1,...,T 

 

where we have used equations (9), PtQt = ptqt = vt for t = 1,...,T, to derive the second set of 

equations in (156). Now convert equations (156) into a set of share equations by taking 

component n in the vector pt, ptn, and multiplying both sides of this equation by qtn and dividing 

by vt = ptqt. We obtain the following system of estimating equations: 

 

(157) stn = m=1
N qtnanmqtm/n=1

N m=1
N  qtmanmqtm ;                                            t = 1,...,T; n = 1,...,N. 

 

When estimating systems of consumer demand equations, it is common to use share equations 

such as equations (157) as the estimating equations. However, in our particular situation, it may 

be preferable to use the system of inverse demand functions defined by equations (156) as 

estimating equations as we shall see below.98  

 

Now introduce missing products into the model. Let S(t) be the set of products n that are present 

in period t for t = 1,...,T. If product n is missing in period t, define qtn  0 and stn = 0. Define qt 

and st as the period t vectors of quantities and shares where qtn  0 and stn  0 if product n is 

missing in period t. It can be seen that equations (156) and (157) are still valid when there are 

missing products, except that instead of t = 1,...,T; n = 1,...,N, we have t = 1,...,T and nS(t). Thus 

we use equation t,n in (157) as an estimating equation only if the corresponding product n is 

present in period t.  

 

The N(N+1)/2 unknown parameters anm in the symmetric A  [anm] matrix can be determined by 

solving the following nonlinear least squares minimization problem:99 

 

(158) min A t=1
T nS(t) [stn − {m=1

N qtnanmqtm/i=1
N j=1

N  qtiaijqtj}]2. 

  

Note that the minimization problem defined by (158) is run as a single nonlinear regression rather 

than as a system of N share equations, which is the more traditional approach when estimating 

systems of consumer demand functions. The unusual specification is due to the fact that there are 

missing products in the T time periods and so the traditional systems approach cannot be applied. 

A second point to note is that not all of the parameters anm can be identified: if anm
* solves (158), 

then so does anm
* for 1  n  m  N for all   0. Thus a normalization on the matrix of 

parameters is required for a unique solution to (158). A final point to note is that the error terms 

in (158) are not weighted by their economic importance. There is no need to do this because the 

dependent variables in (158), the shares, are already weighted by their economic importance and 

so there is no need for further weighting. Put another way, each share is equally important (and is 

 
98  When there are missing prices, estimating systems of inverse demand functions with prices as the 

dependent variables is econometrically convenient. The advantages and disadvantages of alternative 

methods for estimating consumer preferences is discussed at some length in section 10 of Chapter 5. 
99 Alternative estimating equations are considered in Diewert and Feenstra (2017), which has a worked 

example. Diewert and Feenstra found that it was preferable to use the system of estimating equations (156) 

rather than (157) since the goal of the regressions was to find the best fitting system of inverse demand 

functions rather than to find the best fitting system of share equations. More research on the econometrics 

associated with estimating reservation prices is necessary.    
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measured in comparable units) and hence it makes sense to fit the observed shares by model 

predicted shares using a least squares approach.      

 

Once the parameters anm
* have been determined, we can use the price equations defined by (156) 

above to determine the Hicksian reservation prices ptn
* for the missing products for t = 1,...,T and 

n does not belong to S(t): 

 

(159) ptn
*  vtm=1

N anm
*qtm/i=1

N j=1
N  qtiaij

*qtj} ;                                                  t = 1,...,T; nS(t). 

 

Note that the reservation prices defined by (159) will be finite. Using the observed prices and 

quantities for each period t along with the imputed prices ptn
*, complete price and quantity vectors 

for each period can be formed. These complete price and quantity vectors can be used to form 

price and quantity levels for each period using a preferred index number formula. Alternatively, 

the estimated parameters anm
* can be used to form the matrix of parameters, A*  [anm

*]. Use the 

estimated A* matrix to form the period t quantity levels, Qt*  [qtA*qt]1/2 for t = 1,...,T and the 

corresponding period t price levels, Pt*  vt/Qt* for t = 1,...,T.  

 

There are two problems with the above methodology that need to be addressed: (i) how can we be 

sure that the estimated A matrix satisfies the eigenvalue restrictions listed above and (ii) how can 

we estimate the parameters of the A matrix when N is large? 

 

The number of unknown parameters in the A matrix is N(N+1)/2 if there are N products in the 

window of observations. If N = 10, N(N+1)/2 = 55; if N = 100, N(N+1)/2 = 5050. Thus it will be 

impossible to estimate all of the parameters in the A matrix if N is large. 

 

The above two difficulties with this methodology can be addressed if we make use of the 

following reparameterization of the A matrix. Thus we set A equal to the following expression:100 

 

(160) A = bbT + B; b >> 0N ; B = BT ; B is negative semidefinite; Bq* = 0N. 

 

The vector bT  [b1,...,bN] is a row vector of positive constants and so bbT is a rank one positive 

semidefinite N by N matrix. The symmetric matrix B has N(N+1)/2 independent elements bnk but 

the N constraints Bq* = 0N reduce this number by N. Thus there are N independent parameters in 

the b vector and N(N−1)/2 independent parameters in the B matrix so that bbT + B has the same 

number of independent parameters as the A matrix.  

 

The reparameterization of A by bbT + B is useful in the present context because this 

reparameterization can be used to estimate the unknown parameters in stages. Thus initially set B 

= ONN, a matrix of 0’s. The resulting aggregator function becomes f(q) = (qTbbTq)1/2 = (bTqbTq)1/2 

= bTq, a linear utility function. Thus this special case of (160) boils down to the linear utility 

function model that has been used repeatedly in this paper. 

 

The matrix B is required to be negative semidefinite. The procedure used by Wiley, Schmidt and 

Bramble (1973) and Diewert and Wales (1987) can be used to impose negative semidefiniteness 

on B by setting B equal to −CCT where C is a lower triangular matrix.101 Write C as [c1,c2,...,cN] 

 
100 Notation: b is regarded as a column vector and bT is its transpose, which is a row vector.  
101 C = [cnk] is a lower triangular matrix if cnk = 0 for k > n; i.e., there are 0’s in the upper triangle. Wiley, 

Schmidt and Bramble showed that setting B = − CCT where C was lower triangular was sufficient to 

impose negative semidefiniteness while Diewert and Wales showed that any negative semidefinite matrix 

could be represented in this fashion.    
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where ck is a column vector for k = 1,...,K. If C is lower triangular, then the first k−1 elements of 

ck are equal to 0 for k = 2,3,...,N. The following representation for B will hold:  

 

(161) B = − CCT 

             = − n=1
N cncnT 

 

where the following restrictions on the vectors cn are imposed in order to impose the restrictions 

Bq* = 0N on B:102 

 

(162) cnq* = 0 ;                                                                                                                 n = 1,....,N. 

 

As mentioned above, if N is not small, then usually, it will not be possible to estimate all of the 

parameters in the C matrix. Furthermore, frequently nonlinear estimation is not successful if one 

attempts to estimate all of the parameters at once. Thus it is necessary to estimate the parameters 

in the utility function f(q) = (qTAq)1/2 in stages. In the first stage, estimate the linear utility 

function f(q) = bTq.103 In the second stage, estimate f(q) = (qT[bbT − c1c1T]q)1/2 where c1T  

[c1
1,c2

1,...,cN
1] and c1Tq* = 0. For starting coefficient values in the second nonlinear regression, use 

the final estimates for b from the first nonlinear regression and set the starting c1  0N.104 In the 

third stage, estimate f(q) = (qT[bbT − c1c1T − c2c2T]q)1/2 where c1T  [c1
1,c2

1,...,cN
1], c1Tq* = 0, c2T  

[0,c2
2,...,cN

2] and c2Tq* = 0. The starting coefficient values are the final values from the second 

stage with c2  0N. At each stage, the log likelihood will generally increase.105 Stop adding 

columns to the C matrix when the increase in the log likelihood becomes small (or the number of 

degrees of freedom becomes small). At stage k of this procedure, it turns out that a substitution 

matrix of rank k−1 is estimated that is the most negative semidefinite substitution matrix that the 

data will support.106 This is the same type of procedure that Diewert and Wales (1987) (1988) 

used in order to estimate normalized quadratic preferences and they termed the final functional 

form a semiflexible functional form. The above treatment of the KBF functional form also 

generates a semiflexible functional form. 

 

The above functional form for the aggregator function is more general than the linear utility 

function that has been used throughout most of this paper and it is conceptually more general than 

the CES aggregator function that was used in the previous section. Moreover, the reservation 

prices that the method generates are finite. Finally, the present model can deal with situations 

where a new product has a low elasticity of substitution with all existing products; i.e., it provides 

a more satisfactory solution to the new goods problem and the problem of adjusting for quality 

change. However, it has the drawback of being rather complex and hence it may be resistant to 

large scale applications of the method. More research is required in order to develop methods that 

are simpler to implement. 

 

 
102 The restriction that C be upper triangular means that cN will have at most one nonzero element, namely 

cN
N. However, the positivity of q* and the restriction cNTq* = 0 will imply that cN = 0N. Thus the maximal 

rank of B is N−1. 
103 In order to identify all of the parameters, set one component of the b vector to equal 1. 
104 We also use the constraint c1Tq* = 0 to eliminate one of the cn

1 from the nonlinear regression. 
105 If it does not increase, then the data do not support the estimation of a higher rank substitution matrix 

and we stop adding columns to the C matrix. The log likelihood cannot decrease since the successive 

models are nested.  
106 For a worked example of this methodology, see Diewert and Feenstra (2017). 
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This completes our selective review of quality adjustment methods that are based on economic 

approach to index numbers applied to purchasers of consumer goods and services.107   

 

11. Conclusion 

 

This chapter has taken a consumer demand perspective to addressing the problem of adjusting 

price and quantity indexes to take into account the benefits and costs of the introduction of new 

goods and services and the disappearance of existing commodities. This perspective allows all of 

the major methods that address the new and disappearing goods problem to be compared in a 

common framework.  

 

There are three main methods that have been suggested in the literature to address the new goods 

problem: (i) the use of inflation adjusted carry forward and backward prices; (ii) hedonic 

regression methods and (iii) the estimation of consumer preferences and Hicksian reservation 

prices using both price and quantity data. The first two methods will work well if the new and 

disappearing products are highly substitutable with continuing products. However, if substitution 

is low, then the use of the first two methods can lead to substantial biases in price and quantity 

indexes for the class of products under consideration. In the low elasticity of substitution case, the 

third class of methods should be used; i.e., one should use either the cost or expenditure function 

methods suggested by Hausman108 or the direct utility function estimation methods suggested by 

Diewert and Feenstra in section 10 above. Unfortunately, these methods are not easy to 

implement. Thus more research on these methods is required before statistical agencies can 

implement these methods on large scale.    

 

Some of the more important points made in the paper are summarized below. 

 

• Using the theoretical framework explained in section 2 and applying it to hedonic 

regressions in section 5 (when price and quantity data are available) shows that the 

hedonic regression approach generates two distinct estimates for the resulting price and 

quantity levels generated by the regression (unless the regression fits the data perfectly, in 

which case the two methods generate identical estimates). Thus statistical agencies will 

have to choose between these two alternative index number estimates. 

 
107 There is one additional method that could be used to estimate reservation prices. This method uses 

experimental economics to determine the price consumers would have to be paid in order to terminate their 

consumption of a product or service. These estimates can be converted into reservation prices; see 

Brynjolfsson, E., A. Collis, W.E. Diewert, F. Eggers and K.J. Fox (2019) (2020). 
108  “Ultimately, data on price and product attributes alone will not allow correct estimation of the 

compensating variation adjustment to a cost of living index. Quantity data are also needed, so that estimates 

of the demand functions (or equivalently, the expenditure or utility functions) can occur. For this reason, I 

disagree with the panel’s conclusion that hedonic methods are ‘probably the best hope’ for improving 

quality adjustments (Schultze and Mackie (2002; 64 and 122)) since hedonic methods do not use quantity 

data to estimate consumer valuation of a product, and consumer demand must be the basis of a cost of 

living index.” Jerry Hausman (2003; 37). We agree with Hausman’s criticisms of hedonic regression 

techniques to deal with the quality change problem except that we note that hedonic regressions can work 

well if the class of products under consideration are close substitutes for each other. Also, in some 

situations, we have no choice but to work with hedonic regressions rather than estimate consumer demand 

systems. For example, when constructing property price indexes, each property is a unique good, both over 

time and space. A property has a unique location and over time the structure on the property changes due to 

renovations and depreciation. Thus as noted above, hedonic regressions with characteristics information 

must be used in this situation.  
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• The use of weights that reflect economic importance is recommended when running 

hedonic regressions; see the summary of the work by de Haan and Krsinich (2018) in 

section 7. 

• The usefulness of the weighted time product dummy hedonic regressions (without 

characteristics information) that was studied in section 5 is questionable; i.e., it may be 

preferable use the model explained in section 4 that used inflation adjusted carry forward 

and backward prices along with the use of a superlative index number formula for 

matched products. 

• Weighted time dummy hedonic regression models that use characteristics information are 

recommended for dealing with quality adjustment problems provided that the products 

are moderately or highly substitutable; see sections 6 and 7. 

• Section 7 developed a test approach for evaluating the properties of hedonic regressions.  

• Section 8 dealt with hedonic regressions in the context of taste change. Two useful 

methods for estimating price levels when there is considerable product churn were 

suggested: adjacent period time product hedonic regressions and the hedonic imputation 

method. The latter method runs separate hedonic regressions for each period and 

averages the results of these separate regressions to obtain estimated price levels. If 

degrees of freedom are ample, the hedonic imputation method is recommended.  

• Hedonic regression models viewed from the Hicksian approach to the treatment of new 

products have a fundamental problem: the underlying economic model assumes that the 

products are perfect substitutes after the implied quality adjustment. This is not a problem 

if, in fact, the quality adjusted products are close to being perfect substitutes but it can be 

a problem if this is not the case. 

• The CES methodology for accounting for the benefits of new products due to Feenstra 

explained in section 9 can work well if the elasticity of substitution between the products 

under consideration is high. If it is not high, the method will tend to lead to price indexes 

that have a downward bias. 

• The econometric method explained in section 10 for dealing with new and disappearing 

products in the context of the Hicksian reservation price methodology avoids the 

problems associated with the Feenstra methodology but at the cost of a great deal of 

econometric complexity. A robust simplified version of this methodology is required 

before it can be applied by statistical agencies on a routine basis. 

 

This chapter has taken an economic approach to the problem of quality adjustment that is based 

on the basic model of household behavior explained in section 2. This economic model is not 

without its problems but it does lead to a unified approach to the treatment of quality change from 

an economic perspective. 
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