Balancing the Swedish CPI

Meeting of the Ottawa Group in Rome, Italy 7-10 June 2022

Anders Norberg Can Tongur

Statistics Sweden

Outline

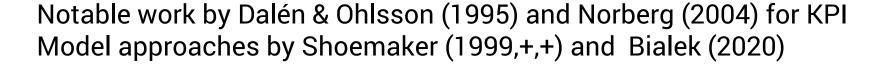
- The Swedish CPI (Konsumentprisindex)
- Variance estimation
- Divisions of CPI in this study
- Methodology
- Results
- Conclusions

The Konsumentprisindex

- Sampling of companies, outlets, products, product offers, time
 - Rotated by PRN (20%)
 - Multistage: outlets product offers
 - Two-phase: areas outlets (many price collectors, historically)
 - Order πps, srs, judgemental
 - Two-dimensional; outlet/product in daily necessities (sort of)

"Old" and new data sources

- Conventional price collection; field, online, telephone
- Regional price collectors, central CPI-staff
- New collection methods in broad usage and ongoing transition: internet, web scraping, transaction data


Variance estimation for the CPI

Complex statistical measure with "derivatives"

Central for the analysis: *short-term link, inflation, change in inflation*One/two baskets, different weights, within-year patterns & business cycles

Variance assessments

- 1) Design based
- 2) Model based
- 3) Randomisation

The Quality Declaration (2022)

- Official statistics provided with QD
- Relies partly on previous studies, partly on simple variance estimates
- Many components in CPI surveys contribute to the final estimate, and the variance
- Does QD improve interpretation for important users?

Table 1 Estimated sampling inaccuracy, length of 95% confidence interval 2021

Statistics	Length of 95% confidence interval	Comments
Monthly change	±0.14	Somewhat shorter for April, May, June and November
Annual change (inflation rate)	±0.23	Somewhat shorter for December*
Monthly change in inflation rate	±0.20	Somewhat shorter for April, May, June, November and December, somewhat longer for other months

^{*}The change from December to December is based on one and the same sample.

CPI divisions in the study

- COICOP 01 and 02.2 (Food, non-alcoholic beverages, tobacco + non-food)
- COICOP 03 Clothing and footwear (=Apparel)
- COICOP 05.1 Furniture
- COICOP 07.1 Domestic and international air travel
- COICOP 11 Restaurants
- Domains compare with previous assessments
 Varying data sources and quality adjustment methods

Bootstrap resampling method

• Select *B* samples from the original data by srs-wr, thus obtaining the same distributions in all samples. Compute the estimates $\hat{\theta}^*(b)$.

$$\widehat{V}(\widehat{\theta}) = \sum_{b=1}^{B} (\widehat{\theta}^*(b) - \widehat{\overline{\theta}}^*)^2 / (B-1)$$

- The formulation allows for setting up most estimators
 Specifically, the twelve-month change from two baskets can be explicitly estimated
- Challenge to mimic the underlying design, many moving parts also between years (=not so simple in practice)

Food/daily necessities

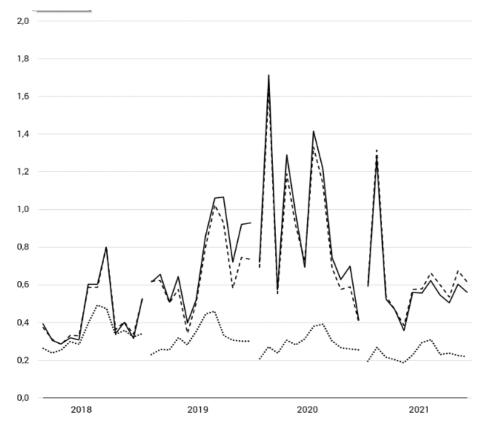
- Two-dimensional sampling
- Transaction Data
 - Outlets cheap
 - Products expensive due to market analysis, replacements and manual quantity adjustments
- Correlations between outlets (in general)
 - Very high in multi-store companies
 - High for chains
- Very high design effect, simple variance estimator not appropriate

Food/daily necessities

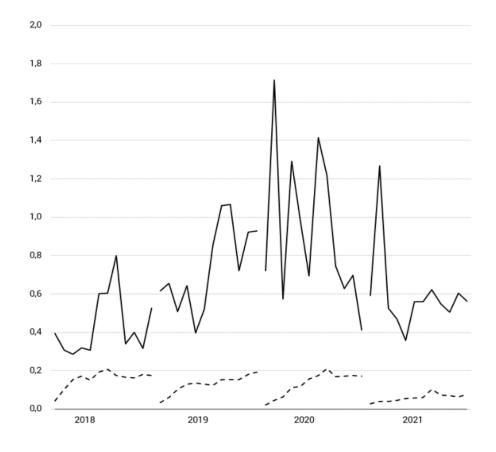
Table 5.1 01 & 02.2 Food and non-alcoholic beverages, Tobacco, and non-food

Subpopulation	Measure	Variance	V(I) /	+/- 2 std.
(Aspects 1-4)		(avg.)	V(S)	errors
1. Food	Short-term	0.043		0.414
B=400	Inflation	0.058	1.360	0.482
	Δ (Inflation)	0.053		0.460
2. Food: products	Short-term	0.028		0.337
B=400	Inflation	0.037	1.315	0.386
	Δ (Inflation)	0.038		0.388
3. Food: outlets	Short-term	0.014		0.235
B=400	Inflation	0.017	1.229	0.260
	Δ (Inflation)	0.012		0.216
(1-2-3) Food:	Short-term	0.001		
Interaction	Inflation	0.004		
B=400	Δ (Inflation)	0.003		

Clothing and footwear


- Manual price collection, on-site and online
- Outlet sampling; central, register
 - Big multi-store companies form strata of their own
- Product offer selection; locally by collector
- Extreme volatility from campaigns/discounts, season sales
- Hedonic quality adjustments
 - No reduction of variance

Additional information: IQI close to 100% in last 10 years



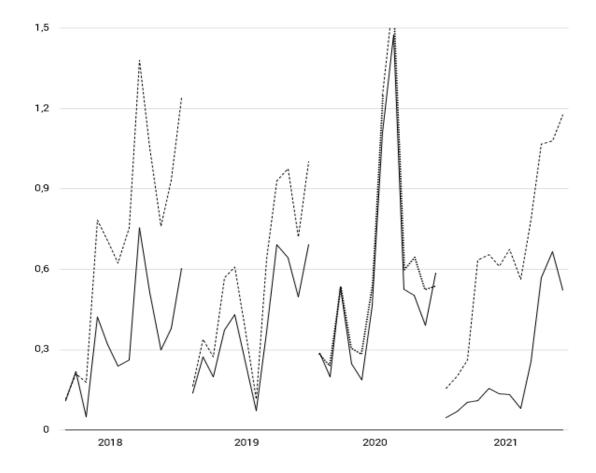
Clothing: variance in actual & regular price

• **Figure 5.2.1** Clothing and footwear: Shortterm index link variance from actual prices, without quality adjustment (dashed) and simple variance (dotted)



• **Figure 5.2.2** Clothing and footwear: Shortterm index link variance from actual prices and regular prices variance (dashed)

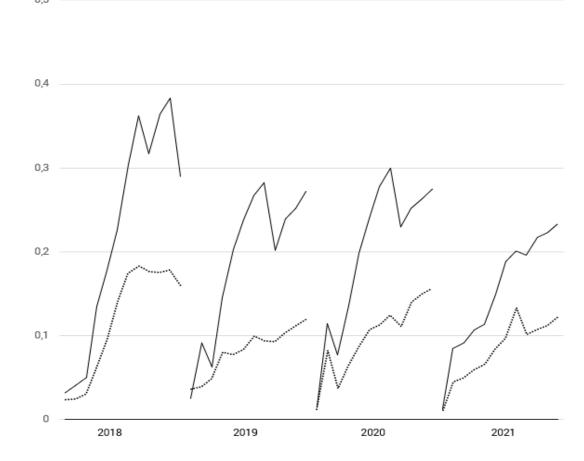
CPI Clothing & Shoes: Inflation 2010-2021



Furniture

- On-site, internet, web scraping
- Judgemental quality adjustments halves the variance
- Simple variance estimates appropriate (=no clustring), unlike other cases in the study

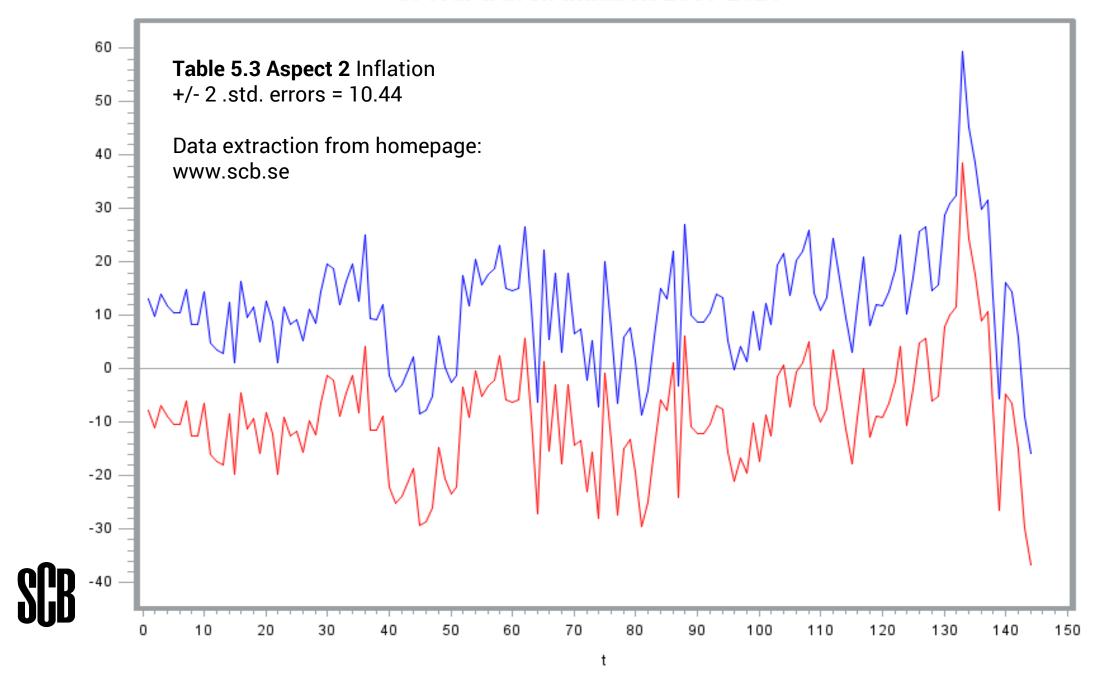
Figure 5.2.6 Furniture: Short-term index link variance, with quality adjustment and without (dashed)



Restaurants

- Telephone/internet
- Judgemental quality adjustments (minor issue)
- Establishment characteristics more distinct (cluster effect)

Figure 5.2.11 Restaurants: Short-term index link variance and simple variance (dotted)



Air travel

- Manual online collection → web scraping, schematic according to HICP
- Completely affected by Covid in weights and imputed prices
- Between-destination variance > within-destination variance
- "The carrier issue" as variance driver?

CPI Air travel: Inflation 2010-2021

Conclusions

- Bootstrapping viable (when *n>1*) but tedious No single setup fits all surveys and years
- Changes in the CPI (basket/method/data source) appear to influence Less "traditional" design orientation with new data sources
- Effective sample sizes potentially smaller than presumed Simple variance estimators downward biased: design effects significant, except in one situation (Furniture)
- Inflation variance/short term variance ratio observed: 1.36 1.77 (yearly averages, dec.-dec. smaller)

Clothing & footwear disproportionately high variance despite survey costs