

# Multilateral indices and the relaunch problem

Product clustering and alternative solutions

Jacco Daalmans 8 June 2022

### Contents

- Relaunch problem
- Product clustering
- Alternative solutions: imputation and matching
- Conclusions



# **Relaunch problem**

e S

## **Relaunches**

- Product replaced by (almost) identical one
- Price change often larger than quality change
- Matched-model methods miss price changes due to relaunches (if nothing is done)
- Here focus on: Geary-Khamis, TPD and GEKS-Törnqvist



# **Product clustering**



### Method

- Items combined into product clusters
- Cluster prices computed as unit values
- Unit value bias for heterogeneous items
- Crucial: Suitable cluster definition



# **Example: Unit value bias**

|                  | Price (0) | Price (1) |    | Quantity (0) | Quantity (1) |
|------------------|-----------|-----------|----|--------------|--------------|
| Product 1        | 10        |           | 12 | 100          | 300          |
| Product 2        | 18        |           | 20 | 300          | 100          |
|                  |           |           |    |              |              |
| Unit value price | 16        |           | 14 |              |              |



# **Clustering: pros and cons**

Pros

- Broad applicability
- Well established
- Easy

Cons

- Unit value bias (heterogeneous strata)
- Analysis below cluster level impossible (loss of details)



# Imputation

e

### Method

- Price estimated for non-sold items
- Aim: solve relaunch problem rather than to complete data -> might give interpretation problems
   e.g. imputed price for a nonseasonal item
- Non-trivial choice between imputation methods
- Methods available for some indices (e.g. GEKS-Törnqvist) but less well known for others (e.g. TPD)



# **Relation imputation and clustering**

Imputation methods exist that give the same results as product clustering

- GEKS- Törnqvist:
  - clustering same as imputing each price with unit value (unobserved **and** observed prices)
- TPD and Geary-Khamis:

Same as for GEKS- Törnqvist, but also quantities need to be imputed



# **Relation imputation and clustering**

- Unit value bias in clustering corresponds to a rigorous imputation approach
- In paper: new imputation methods that:
  - mimic product clustering
  - less rigorous replacement of prices

If all prices are observed -> No adjustment (contrary to clustering) If many prices are missing -> Similar results as clustering



# **Product matching**



### Method

- Each new product matched with a disappeared product
- Replacement and replaced products should be similar
- Semi-automatic procedures proposed: text mining and manual analysis
- Automatable methods needed for transaction data
- Solution needed if number of new and disappeared products are unequal
- In paper: a simple procedure with arbitrary choices

# Matching

### <u>Pros</u>

No adjustment of prices and quantities (contrary to clustering and imputation)

### <u>Cons</u>

Arbitrary choices (matching procedure)

Interpretation of the matched products



# Simulation



## Setup

- 12 month data TV's, chocolate and potato products
- Fixed population: products that have been sold each month
- Simulated relaunches (change of product ID)
- Monte carlo simulation (100 replicates)
- Comparison:

no correction, clustering, imputation, matching versus 'true' index without simulated relaunches

- Criterion: median abs difference of index values



## **Scenario 1: random relaunches**

#### TV's : Median distance from true index

|               | GEKS-Törnqvist | Geary Khamis | TPD         |
|---------------|----------------|--------------|-------------|
| No correction | 1.18           | <u>1.32</u>  | <u>0.74</u> |
| Imputation    | 0.65           | 4.74         | 4.83        |
| Matching      | 1.38           | 1.48         | 2.33        |
| Clustering    | 4.56           | 5.52         | 5.63        |

### Chocolates: Median distance from true index

|               | GEKS-Törnqvist | Geary Khamis | TPD         |
|---------------|----------------|--------------|-------------|
| No correction | <u>0.37</u>    | <u>0.16</u>  | <u>0.20</u> |
| Imputation    | 0.47           | 0.94         | 1.47        |
| Matching      | 0.46           | 0.58         | 0.98        |
| Clustering    | 0.78           | 1.07         | 1.03        |



# **Scenario 1: random relaunches**

| Potatoes: Median distance from true index |                |              |             |
|-------------------------------------------|----------------|--------------|-------------|
|                                           | GEKS-Törnqvist | Geary Khamis | TPD         |
| No correction                             | 1.96           | 1.40         | 1.22        |
| Imputation                                | 1.78           | 1.31         | 1.15        |
| Matching                                  | <u>0.48</u>    | <u>0.53</u>  | <u>0.51</u> |
| Clustering                                | 1.27           | 1.37         | 1.37        |

- Best correction method:
  - For TV's and Chocolates: 'No correction'
  - For Potatoes: 'Matching'
- Matching always better than clustering



### **Scenario 2: Non-random relaunches**

- Relaunches occur at one time period for randomly selected
  75% of all items.
- Each relaunch goes along with a simulated, permanent price increase by 20%.



## Scenario 2: Non-random relaunches

#### *TV's* : *Median distance from true index*

|               | GEKS-Törnqvist | Geary Khamis | TPD         |
|---------------|----------------|--------------|-------------|
| No correction | 11.14          | 7.39         | 10.54       |
| Imputation    | <u>1.24</u>    | 3.81         | 5.11        |
| Matching      | 2.10           | <u>1.44</u>  | <u>3.62</u> |
| Clustering    | 5.63           | 6.66         | 6.70        |

### *Chocolates: Median distance from true index*

|               | GEKS-Törnqvist | Geary Khamis | TPD         |
|---------------|----------------|--------------|-------------|
| No correction | 14.77          | 11.90        | 14.61       |
| Imputation    | 1.83           | <u>0.34</u>  | 3.04        |
| Matching      | <u>0.20</u>    | 4.09         | <u>0.54</u> |
| Clustering    | 0.74           | 0.85         | 0.81        |



## Scenario 2: Non-random relaunches

| Potatoes: Median distance from true index |                |              |             |
|-------------------------------------------|----------------|--------------|-------------|
|                                           | GEKS-Törnqvist | Geary Khamis | TPD         |
| No correctio                              | n 13.33        | 10.42        | 13.40       |
| Imputation                                | <u>0.83</u>    | 2.06         | 1.28        |
| Matching                                  | 0.95           | 1.58         | <u>1.05</u> |
| Clustering                                | 1.10           | <u>1.31</u>  | 1.20        |

- Correction method necessary ("no correction" gives large errors)
- Best correction method depends on data set and index method:
  - \* Matching (5 cases)
  - \* Imputation (3 cases)
  - \* Clustering (1 case)
- Matching better than clustering for 7 out of 9 cases



# Conclusion

e

- Correction for relaunches needed (given a price increase)
- Clustering easy, well-understood, broad applicable, but unit value bias for heterogeneous strata
- Imputation and matching mostly give better results in a simulation study (especially matching)
- Drawbacks: arbitrary choices, unnatural to 'add' values to transaction data, interpretation difficulties.

# Thank you!

