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ABSTRACT 

 
The paper develops and illustrates a new method for computing a cost 

of living index (COLI) based on an estimated newly proposed 

generalized constant elasticity of substitution utility function 

(GCESUF) that has the advantages of (i) generality, (ii) practicality, 

(iii) accuracy, (iv) integratedness, and (v) comprehensiveness. 

 

(i) The method is general because the GCESUF allows a wide range of 

elasticity responses to changed prices and expenditure levels, in 

particular, isn't necessarily homothetic so that expenditure shares 

can vary with expenditure levels. 

 

(ii) The method has two broad implementation steps: (a) estimating a 

GCESUF and (b) using the estimated GCESUF to compute a GCES/COLI. The 

method is practical because both steps (a)-(b) can be numerically 

implemented easily, reliably, and quickly for any number of goods (and 

services) by evaluating analytically-derived scalar-level expressions. 

 

(iii) By definition, a COLI holds if and only if the utility of a 

representative consumer is constant over the sample of data being 

considered. The method is accurate because it can implement 

computations (b) to any desired degree of numerical accuracy simply by 

passing through an already programmed double loop a pre-determined 

number of times. That is, there's no convergence involved with an 

open-ended number of loop passes. Apparently, no one else has proposed 

or illustrated any practical method for accurately computing a COLI 

for a general UF and a large number of goods 

 

(iv) The method is integrated because all aspects of estimation (a) 

and computations (b) are formally derived based on microeconomic 

foundations, mathematics, and statistics (econometrics). There are no 

"ad hoc" or "intuitive" steps or jumps in (a)-(b). The method includes 

an integrated version of standard adjustment of a price index for 

changes in qualities of goods based on "hedonic" regression. 

 

(v) The method is comprehensive because it simultaneously accounts for 

the effects on GCES/COLI of changes in consumer's preferences for 

goods and for producer's changes in qualities of goods. 

 

The GCES/COLI method is illustrated with an application to monthly 

data on 8 aggregate categories of goods in the U.S. CPIU from January 

1990 to December 2008. The resulting GCES/COLI lies about halfway 

between uniformly higher and lower Laspeyres and Törnqvist price 

indexes computed from scratch with the same data. GCES/COLI is also 

comprehensive by being to handle turnover of goods without essential 

change, which is explained but not illustrated in the paper because 

it's inappropriate for the 8 aggregate categories of goods.  
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1. Introduction. 
 

1.1. General introduction. 

 

By definition a cost of living index (COLI) is a price index (PI) 

that holds the utility of a representative consumer constant over a 

sample of data. Although being a COLI has been a touchstone of a PI 

and PIs have been claimed to be COLIs, the present paper appears to be 

the first one to propose a practical method for accurately computing a 

COLI on a large scale. Because consumers' preferences for goods (and 

services) and qualities of goods change over time, an accurate COLI 

computation should account for these changes, which the present method 

does using an estimated time-varying generalized constant-elasticity-

of-substitution utility function (GCESUF). The COLI of the estimated 

GCESUF (GCES/COLI) is illustrated in the paper using U.S. monthly 

price and quantity data from the Bureau of Labor Statistics (BLS) on 8 

aggregate categories of goods (and services) from January 1990 to 

December 2008. 

The GCESUF is specified in terms of constant "substitution 

parameters" in matrix B, time-varying "preferences" in vector tA , and 

time-varying "qualities" in vector tR . B defines curvature of 

indifference curves (surfaces for more than two goods), contributes to 

the determination of slopes of indifference curves, and is, therefore, 

the major determinant of substitutions among consumed goods when their 

relative prices change. Because tA  and tR  contribute to the 

determination of slopes of indifference curves, as such they also 

contribute to the determination of substitutions among goods. Because 

"parameters" usually refers to constants, time-varying  tA  and tR  are 

called "preferences" and "qualities" and not "preference parameters" 

and "quality parameters". 

Ideally B should also be time varying but is treated here as a 

constant, because a constant B can be estimated consistently and 

efficiently (with minimum variance) by linear regression, but a time-



3 

 

varying B can be estimated only using a more specialized, nonstandard, 

and nonlinear estimation method. First-order conditions (FOC) of a 

consumer's optimization problem for GCESUF are considered demand 

equations for goods, are the basis for linearly estimating elements of 

B (or nonlinearly estimating "deeper" parameters underlying B), 

preferences, and qualities, which and are, then, used to compute 

GCES/COLI by applying multi-step perturbation (MSP) to the estimated 

FOC and the data. 

Chen and Zadrozny (2009) developed and applied MSP for a closely 

related productivity analysis. MSP has a preset approximation order k  

and a preset number of steps h and, therefore, doesn't involve an 

open-ended number of steps that need to converge. Related 1st- and 

2nd-order solution methods were developed and applied for related 

consumption analyses by Vartia (1983), Breslaw & Smith (1995), and 

Dumagan & Mount (1997) and analyzed for accuracy by Sun & Xie (2013). 

Versions of MSP are used in physics, where they're called homotopy 

perturbation (He, 2006). 

Laspeyres (1871), Paasche (1874), and Fisher (1922) PIs are commonly 

used PIs, none of which are generally accurate as COLIs, because they 

are based on observed quantities of goods and not on computed 

quantities of goods that hold utility of an underlying representative 

consumer constant over a sample of data. The probability is zero that 

utility of any utility function underlying a PI computed with observed 

quantities of goods is constant over a sample of data. Therefore, the 

probability is zero that a common PI computed with observed quantities 

of goods over a sample is accurate as a COLI. 

The Divisia (1928) PI is methodologically close to GCES/COLI by also 

being derived using marginal first-order conditions of a consumer's 

optimization problem for any time-varying and differentiable utility 

function. Therefore, the Divisia PI implicitly accounts for changes in 

preferences for goods, but not for changes in qualities of goods. A 

key difference between GCES/COLI and Divisia PI is that GCES/COLI is a 

COLI because it's based on computed quantities of goods that hold 

utility constant over a sample of data, whereas the Divisia PI is 
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based on observed quantities of goods for which utility changes with 

probability one over a sample of data. 

Because it's formulated in continuous time, the Divisia PI can't be 

computed directly with discrete-time data but is commonly approximated 

for discrete-time data by the Törnqvist (1936) PI. However, the 

Törnqvist PI was determined intuitively, was not derived from the 

Divisia PI, so that its accuracy as approximation of a Törnqvist PI is 

unclear without further analysis. Approximation error aside, like the 

other aforementioned PIs, the Törnqvist PI generally also isn't 

accurate as a COLI because it's computed with observed quantities of 

goods. Quantities of goods for which utility is constant over a sample 

of data can't be computed for the Törnqvist PI, because it has no 

known unique underlying utility function. The Törnqvist PI can be 

derived from a particular utility function such as Cobb-Douglas, but a 

unique utility function can't be derived from a Törnqvist PI. 

 

1.2. Review of more recent literature. 

 

GCESUF generalizes common utility functions such as Cobb-Douglas 

(CDUF; Cobb & Douglas, 1928) and Constant-Elasticity-of-Substitution 

(CESUF; Arrow et al., 1961) and is comparable to a translog utility 

function (TLUF; Christensen et al., 1975). CDUF implies unit price and 

expenditure-level elasticities, so that expenditure shares don't vary 

with prices or expenditure levels; CESUF generalizes this to any 

constant price elasticities, so that expenditure shares vary with 

prices but not with expenditure levels; TLUF implies a wider range of 

price and expenditure-level elasticities and, like GCES/COLI, allows 

non-unit expenditure-level elasticities. As discussed below, TLUF and 

GCESUF can be related to each other and, therefore, should have very 

similar elasticities, although no attempt is made here to verify this. 

Both GCESUF and TLUF can be considered utility functions in their own 

right or linear-quadratic approximations of more general utility 

functions. 
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 Diewert's (1976) notion of a "superlative" PI has been a main 

criterion for over 45 years for deciding whether or not a PI is good 

or acceptable. A PI is defined as superlative if and only if it's an 

"exact PI" for a 2nd-order Taylor approximation of a true homothetic 

utility function. GCES/COLI has the following four advantages over a 

PI whose only justification is that it's superlative. 

 1. Saying that a PI is superlative is a general qualitative 

statement without specific numerical qualification. By contrast, 

GCES/COLI is a quantitative method that produces a PI whose accuracy 

as a COLI can be checked numerically. 

2. Diewert's proof relies on an underlying and approximate utility 

function being homothetic, which is unrealistic, because a homothetic 

utility function implies that expenditure shares don't vary with 

expenditure levels, which is rejected by almost all data. GCESUF 

allows nonhomotheticity and, therefore, allows expenditure shares to 

vary with expenditure levels, as in the application in section 4. 

3. A 2nd-order Taylor approximation of an underlying utility 

function is accurate only locally in some limited region around the 

center point of the approximation. If data range widely, then, a PI 

can be accurate superlatively over a range of data only by having 

multiple, different, approximating utility functions which seems to 

contradict the notion of being superlative. By contrast, as proved in 

appendix B, GCES/COLI can be made as globally accurate as desired over 

any range of data for the same GCESUF simply by computing with enough 

MSP steps. 

4. Like the aforementioned common PIs, a superlative PI would be 

accurate as a COLI only if it were based on computed quantities of 

goods for which utility is held constant over a sample of data, but 

this has nothing to do with being superlative. 

Like GCES/COLI, Gabor-Toth & Vermeulen (GTV; 2018) and Redding & 

Weinstein (RW; 2020) developed PIs from explicit solutions of optimal 

consumption problems for estimated utility functions that account for 

changes in preferences for goods, but, unlike GCES/COLI, don't also 
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account for changes in qualities of goods, GCES/COLI has two other 

advantages over GTV and RW's PIs. 

First, GTV and RW used tiered (composite) CDUF and CESUF that, 

although apparently sufficiently general to adequately fit the data 

they used, inherit homotheticity from underlying CDUF and CESUF and, 

therefore, unrealistically imply unit expenditure-level elasticities 

for their PIs. Although their time-varying preferences account for 

time-varying expenditure shares, they do so spuriously to the extent 

that expenditure shares vary because the UF is nonhomothetic. 

Second, because GTV and RW's PIs are computed using observed 

quantities of goods, their PIs can't generally be accurate as COLIs. 

In principle, GTV and RW could have computed quantities of goods that 

hold utility constant over a sample of data, but, doing this in the 

usual way in which they proceeded with closed-form utility functions 

would be practically impossible, because it would require solving a 

nonlinear problem for the n quantities of goods for each sample 

period. Doing this for the n = 8 goods in the application in section 4 

would be difficult enough, much less for the hundreds of goods in GTV 

and RW or the thousands of goods in the U.S. consumer price index of 

urban consumers (CPIU). 

GCES/COLI avoids this practical impossibility by solving an n 1-

dimensional linear-equation system h  times every sample period. 

GCES/COLI does this not by using a closed-form utility function but by 

using a closed-form marginal utility function that determines the 

differential of the utility function, setting the differential to 

zero, and computing GCES/COLI by numerically integrating the first-

order conditions of a consumer's optimal consumption problem in 

differential form to periods of the discrete-time data. If, as in the 

application in section 4, matrix B of substitution parameters is 

diagonal, then, the n 1-dimensional linear-equation system has a known 

analytical solution of the form of equations (4.1)-(4.3), so that 

GCES/COLI can be computed easily, quickly, and accurately by 

evaluating scalar-level expressions, one for each good, one good at a 
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time. Thus, GCES/COLI practically solves the problem of accurately 

computing a COLI for any number of goods.  

 

1.3. Continuation of the paper. 

 

The paper continues as follows. Section 2 defines GCESUF and states 

a representative consumer's optimal consumption problem, including its 

first- and second-order conditions (FOC, SOC). Section 3 explains how 

the FOC are used to estimate parameters, preferences, and qualities of 

a GCESUF with discrete-time data and, then, how the estimates are used 

to compute GCES/COLI with MSP. Section 4 illustrates section 3 with 

U.S. monthly data on 8 aggregate categories of goods in the CPIU. 

Section 5 summarizes the paper and discusses four possible extensions: 

estimating a full (nondiagonal) matrix B, estimating a time-varying 

matrix B, handling turnover of goods, and computing a monetary-

financial services index in the manner of GCES/COLI. Appendix A proves 

that inequality (2.13) is sufficient for SOC of a consumer's optimal 

consumption problem to hold. Appendix B reviews definitions, 

representations, and rules of matrix differentiation. Appendix C uses 

the differentiation rules to state the details of MSP computation of 

GCES/COLI. Appendix D proves that MSP has global accuracy of order 
k

h  

for MSP order k  and number of steps h .  

 

2. Optimal consumption problem. 

 

2.1. Definitions and notation. 

 

Consider a sample of data spanning the continuous-time interval    

[1, T+1) = { |1   < T+1}. The sample is divided into T periods of 

equal unit length as [1,T+1) = 
T

t 1
[t,t 1)


 , so that [t,t+1) = {  |t    

< t+1} is period t. A variable such as c is denoted at continuous 

moment  by c() and at the beginning of discrete period t by tc  = c(t). 
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Let dc() =    ( c()/ )d  denote the first differential of c() with 

respect to continuous time , where   c()/  denotes the first-partial 

derivative of c() with respect to . Let 1 tc  = t 1c  - tc  denote the 

discrete-time 1-period forward difference of tc , so that 1 tc  = 

t 1

t
dc()



 
  by the fundamental theorem of calculus. 

In particular, let c() = ln(C()) denote the natural logarithm (log) 

of the cost of expenditures C() = 


 
n

i ii 1
P()Q() on n consumed goods (and 

services) at moment , where P() = 1(P(),…,  T

nP())  and p() = 

1(p(),…,  T

np ())  denote n 1 vectors of observed prices of goods in 

original units and logs ( ip()= iln(P())), where superscript T denotes 

vector or matrix transposition, and Q() = 1(Q(),…,  T

nQ ())  and q() = 

1(q(),…,  T

nq ())  denote n 1 vectors of observed quantities of goods in 

original units and logs. Let A() = 1(A(),…,  T

nA ())  and a() = 

1(a(),…,  T

na ())  denote n 1 vectors of unobserved preferences for goods 

in original units and logs, let R() = 1(R(),…,  T

nR ())  and r() = 

1(r(),…,  T

nr())  denote n 1 vectors of unobserved qualities of goods in 

original units and logs, and let S() = 1(S(),…,  T

nS())  denote the n 1 

vector of shares of expenditures on goods, iS() =   i iP()Q()/C(). Quantity 

iQ() denotes a count of units of good i, like the number of 

automobiles, quality iR() denotes a multiplicative quality-adjusting 

factor per unit of iQ(), so that V() = 1(V(),…,  T

nV())  = 

 1 1(R()Q(),…,   T

n nR ()Q ())  denotes the n 1 vector of quality-adjusted goods 

in original units. All variables in original units, observed C(), iP(), 

iQ(), and iS() and unobserved iA () and iR(), are positive real 

numbers. The general notational rule is that upper-case Latin letters 

denote variables in original units and corresponding lower-case Latin 

letters denote their natural logarithms.   
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2.2. First-order conditions. 

 

Let U(V()) denote utility as a differentiable function of quality-

adjusted goods. At every moment   [1,T+1) in periods t = 1,…,T and 

for given utility function, U(V()), qualities of goods, R(), level of 

utility, U, and prices of goods, P(), a representative consumer 

purchases and consumes quantities of goods, Q(), at minimum cost of 

expenditures, C() = 
n

i ii 1
P()Q()


  , such that utility is at level U(V()) 

= U. 

The optimal consumption problem has n 1 first-order conditions 

(FOC): n marginal FOC (MFOC) and one constraint FOC (CFOC). The MFOC 

are 

 

(2.1)         iL() U(V())/ Q() = iP(), 

 

for i = 1,…,n, where L() denotes a Lagrange multiplier. The MFOC are 

derived in terms of quality-unadjusted iQ(), because they are the 

consumer's decision variables that affect cost C(). The CFOC is 

 

(2.2)     U(V()) = U. 

 

The term "utility function" is generally a misnomer here and is used 

for convenience, because GCESUF is specified in terms of marginal 

utilities that integrate to a utility function if and only if 2nd-

order cross-partial derivatives (further derivatives of marginal 

utilities) are equal (Ford, 1955, pp. 137-141). The conditions are 

called "integrability conditions" and hold for GCESUF only in special 

cases such as when matrix B of substitution parameters is diagonal. 

For GCES/COLI derivation and computation it makes no difference 

whether the differential of utility is integrable or not, because 

GCES/COLI depends entirely on marginal utilities. 
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If a GCESU differential isn't integrable, then, integrals over 

different connected paths produce different values of changes in 

utility and a utility function doesn't exist. If a GCESU differential 

is integrable, then, every integral over a connected path from a first 

point in goods space to second point in goods space produces the same 

change in utility regardless of the path taken, so that a utility 

function can be defined and exists. 

We define GCESUF marginal utility of good i in terms of quality-

adjusted quantities iV() =  i iR()Q() by 

 

(2.3)        iU(V())/ V() = iA ()



 

n ij
j jj 1

(R()Q()) , 

 

for i = 1,…,n. Marginal utility of good i increases with increased 

preference iA () and decreases with increased quality iR(), because ii 

> 0. 

   The difference between iA () and iR() can be unclear. For example, a 

garment may be preferred or not (have high or low iA ()) whether it 

objectively has high quality or not (has high or low iR()). Such 

ambiguity is ameliorated in section 3.2 by introducing correlation 

coefficient itˆ  between preferences for and qualities of a good. For 

example, if a garment is highly preferred and considered to have high 

quality, whether objectively it has high quality or not, then, we may 

expect itˆ  to have a positive and high value. In any case, the present 

probabilistic method for computing GCES/COLI implicitly takes any 

value of itˆ  into account without explicitly using it.  

Off-diagonal elements ij of B measure by how much marginal utility 

of good i is affected by consumption of good j. Upon renumbering of 

goods, if necessary, "related" (ij   0, i   j) and "unrelated" (ij = 

0, i   j) goods make B block diagonal. In the application in section 

4, attempts to estimate a more general than diagonal B failed, which 

makes sense for the large categories of goods. For example, we don't 
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expect utility from consumption of medical services to be affected by 

consumption of apparel. 

To proceed, we need the marginal utility of good i with respect to 

iQ(). The chain rule of differentiation,    iU(V())/ Q() = 

    iU(V())/ V()    i iV( )/ Q() =     iU(V())/ V() iR() and definition (2.3) imply 

that 

 

(2.4)       iU(V())/ Q() = 



 

n ij
i jj 1
F() Q() , 

 

for i = 1,…,n, where iF() = 
 


 

n ij ij
i jj 1
A () R()  and ij  denotes the 

Kronecker delta ( ii  = 1; ij  = 0, for i ≠ j). In vector-log form, 

 

(2.5)    f() = a() +  n(I B)r(), 

 

where f() = 1(f(),…,  T

nf()) , if() = iln(F()), and nI  denotes the nxn 

identity matrix. 

 We also need marginal utilities in terms of logs iq() and ir(). 

Multiplying equation (2.4) by iQ() implies that 

 

(2.6)        iU(V())/ q() = 
 


 

n ij ij
i jj 1
F() Q()  =  i(), 

 

for i = 1,…,n. Because iQ() and iR() enter U(V()) symmetrically as 

 i iQ()R(), 

 

(2.7)        iU(V())/ r() = iU()/ q()     =  i(). 

 

GCESUF relates to the translog utility function (TLUF; Christensen 

et al., 1975): GCESUF is defined by    ln( U(V()/ Q()) = f() - Bq(), where 

 Q() =  1( Q(),…,  T

nQ ()) , and TLUF may be defined correspondingly by 
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   ln(U(V())/ lnQ() = f() - Bq(), where  lnQ() =  1( lnQ(),…,  T

nlnQ ()) , so 

that, whereas GCESUF is defined linearly in terms of logs of marginal 

utilities with respect to goods in original units, TLUF is defined 

linearly in terms of marginal logs of utilities with respect to logs 

of goods. 

With restrictions on B, GCESUF approximates or equals standard 

utility functions. For example, if B is diagonal with large positive 

diagonal elements, then, GCESUF is approximately a fixed-proportions 

Leontief utility function; if B = { ij } = { ij i   }, where 0 < i  < 1 

and 
n

ii 1
  = 1, then, GCESUF is a CDUF; if B is scalar (diagonal with 

equal positive diagonal elements), then, GCESUF is a standard CESUF; 

if B is diagonal with unequal positive diagonal elements, then, GCESUF 

is the utility function in the present application. 

 

2.3. First-order conditions in differential form. 

 

Inserting marginal utilities (2.4) into MFOCs (2.1) and taking logs 

gives 

 

(2.8)      e () + f() - Bq() = p(), 

 

where e = (1,…,
T

1)  = nx1 and  () = ln(L()). Differentiating MFOC (2.8) 

totally with respect to  gives 

 

(2.9)      ed () + df() - Bdq() = dp(). 

 

Differentiating CFOC (2.2) totally with respect   and inserting 

marginal utilities (2.6)-(2.7) into the result gives 

 

(2.10)    
    

n

i i ii 1
()(dr() dq()) = 0. 
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Because MFOCs (2.9) imply that  i() = iS() in CFOC (2.10), MFOCs (2.9) 

and CFOC (2.10) combine as the differential-equation system 

 

(2.11)   

11 1n

n1 nn

1 n

1

1

S( ) S ( ) 0

  
 
 
  
 

  

1

n

dq( )

dq ( )

d ( )

 

 
 
 

 
 

  

 = 







        
 
 
        
 
    







n

1 1 1j 1j jj 1

n

n n nj nj jj 1

n

j jj 1

 

dp( ) da( ) ( )dr( )

dp ( ) da ( ) ( )dr( )

S( )dr( )

, 

 

such that "endogenous" variables, idq() and  d (), are determined by 

solving system (2.11) using MSP, for given values of "exogenous" 

variables, idp(), ida(), and idr(). 

The first-n scalar MFOC equations in system (2.11) are linear in 

variables, because their coefficients ij, 0, and 1 are constant, i.e., 

have the same values for all values of ; the last-( n 1)th scalar 

CFOC equation in system (2.11) is nonlinear, because iS() depend 

nonlinearly on . The first-n scalar MFOC equations in MSP-integrated 

discrete-time system (2.11) are the key to estimating B and 
T

it it t 1{a ,r }  

consistently and efficiently and computing 
T

t t 1{GCES/COLI }  with 

discrete-time data.  

 

2.3. Second-order conditions. 

 

Second-order conditions (SOC) must hold in order for a solution of 

the consumer's optimal consumption problem at the FOC to be locally 

unique. Having the SOC hold at the FOC is also necessary for GCES/COLI 

to be computed reliably and accurately using MSP. The necessary and 

sufficient SOC of a representative consumer's optimal consumption 

problem came to economists from Mann (1943) via Samuelson (1947) and 

impose alternating sign restrictions on the principal minors of system 

matrix 
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(2.12)    B( )  = 
T

B e

S( ) 0

 
 

 
 

 

of system (2.11). 

As a slightly more restrictive but much easier to enforce SOC, we 

assume that 

 

(2.13)     B( )  is negative definite (B( )  < 0). 

 

If B( )  is negative definite, then, B is positive definite (PD; B > 

0). A real square matrix is PD if and only if its eigenvalues are real 

and positive. Usually, real square PD matrices are symmetric, but not 

necessarily according to this definition. 

Appendix A proves that 

 

(2.14)     If (B)  > 1/n 2 n  , then, B( )  is negative definite, 

 

where (B)  denotes the smallest (presumably, real and positive) 

eigenvalue of B. Because the diagonal elements of a diagonal matrix 

are its eigenvalues, table 2 shows that (̂B)  = 8.04 > 3.18 = 

1/8 2 8  , so that condition (2.14) easily holds in the application 

in section 4. 

 

3. Estimation of GCESUF and computation of GCES/COLI. 

 

3.1. Estimation of substitution parameters in B. 

 

   We now discuss three possible ways of estimating substitution 

parameters in B: unrestricted ordinary-least-squares estimation 

(ULSE), restricted LSE (RLSE), and maximum likelihood estimation 
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(MLE). We consider the three estimation methods because they have the 

following tradeoffs. 

ULSE is easy to implement and quick to execute, but may produce 

estimates that don't satisfy the SOC that are necessary for MSP 

computation of GCES/COLI to be reliable and accurate. RLSE can be as 

easy to implement and quick to execute as ULSE, but its restrictions 

may be considered arbitrary, hence, its estimates may be considered 

biased. 

MLE has theoretical advantages and computational disadvantages. MLE 

can handle a wide range of restrictions on parameters in a 

statistically coherent way. Depending on restrictions, MLE can 

estimate parameters either sequentially and more easily, one scalar 

estimating equation at a time, or only simultaneously and with more 

difficulty, using all estimating equations simultaneously. In 

practice, MLE iterations may converge too slowly and are stopped or 

may diverge and stop by themselves due to overflowed computations. 

These difficulties with and failures of MLE tend to occur when "too 

many" parameters are poorly identified. However, MLE was used 

successfully in the application in section 4 to estimate the 8 

parameters of diagonal B.  

 

3.1.1. ULSE of substitution parameters in B. 

 

 The standard hedonic regression equation for adjusting observed 

prices of goods for their observed qualities is 

 

(3.1)     tp  =  tz  + t, 

 

for t = 1,…,T, where   denotes an nxm  matrix of constant 

coefficients, tz  denotes an mx1 vector of observed qualities or 

supply-determined variables in log form that don't necessarily 

directly measure qualities but indicate them, and t denotes an nx1 
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vector of unobserved disturbances that are assumed to be uncorrelated 

with tz , so that tz  is exogenous in equation (3.1). 

 In usual hedonic adjustment, estimated ̂  is obtained by applying 

ULSE to each scalar equation in vector equation (3.1) and is then used 

to adjust prices of goods for their qualities as tp  = tp  -  t
ˆz  

(Coats, 1939; Griliches, 1961), where a hat (^) denotes a value 

estimated using all data, 
T

t t t t 1{p ,q ,z } , and the absence of a hat 

denotes an observed value or an unobserved true value. 

 The more pertinent quality-accounting equation for GCES/COLI is 

 

(3.2)     tr  =  tz  + t, 

 

for t = 1,…,T. Although   can't be estimated directly using equation 

(3.2) because tr  is unobserved,   can be estimated indirectly using 

 

(3.3)     tq  =  tp  +  tz  + t , 

 

obtained by replacing tr  in the discrete-time form of MFOC (2.8) with 

the right side of equation (3.2) and rewriting the result, so that   

= -
1

B ,   = 
  1

n(B I ) , t  = 
     1 1

t t n tB (e a ) (B I )  = nx1 vector of 

unobserved disturbances. 

 We assume that 
T T T

s s(p ,z )  and t  are uncorrelated in equation (3.3) 

within and across all periods, 

 

(3.4)     T T T T

s s tE(p ,z )  = (n m)xn0 , 

 

for s,t = 1,…,T, where E denotes unconditional expectation, so that tp  

and tz  are exogenous in equation (3.3) and the estimation methods 

discussed here yield consistent estimates ̂ , ̂ , B̂ = -
 1ˆ , and ̂  = 

  1 1

n
ˆ(̂B I ) . 
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   GCES/COLI is more accurate to the extent that tz  accounts for more 

of changes in qualities of goods. In fact, the discussion at the end 

of section 3.2 indicates that, if tz  accounts for all changes in 

qualities of all goods in every period (which never happens in 

practice), and the estimated GCESUF is an accurate estimate of the 

true UF of the representative consumer, then, the computed GCES/COLI 

can be considered an accurate estimate of the true COLI of the 

representative consumer. 

 Condition (3.4) in effect says that tp  and  tz  are determined by 

suppliers (firms) and ta , t, and t are determined independently by 

demanders (consumers). Whereas the usual hedonic adjustment doesn't 

account for the effects of unobserved and unaccounted for t on a PI, 

the GCES/COLI method accounts probabilistically for the effects of t 

on GCES/COLI. 

 If condition (3.4) is questioned, then, a simultaneous-equations 

supply-demand equilibrium-analysis can be added. Scalar equations in 

vector equation (3.3) are demand-for-goods equations and supply-of-

goods equations would need to be introduced. Gabor-Toth & Vermeulen 

(2018) and Redding & Weinstein (2020) estimated such demand-supply 

equilibria of prices and quantities for disaggregated categories of 

goods. Such demand-supply equilibria aren't estimated in the 

application in section 4, because they wouldn't be convincing for the 

large and heterogeneous categories of goods in the application. 

 If  and   are estimated with equation (3.3) and implied estimated 

B̂ = 
 1ˆ  satisfies the SOC of GCES/COLI, then, estimated ̂  and ̂  are 

statistically efficient (asymptotically unbiased with minimum 

variance), because ̂  satisfies all GCES/COLI restrictions on B̂ and 

there aren't any GCES/COLI restrictions on ̂ , hence, on ̂ . 

Differentiated CFOC (2.10) imposes no restrictions on B, because MFOC 

(2.8) imply that it = itS  in CFOC (2.10) for any differentiable 

utility function and any data. 
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We assume that disturbance vector t  in demand equation (3.3) is 

distributed normally, identically, and independently, with zero mean 

vector and constant positive-definite covariance matrix   (> 0), 

 

(3.5)     t  ~ NIID(0,  ), 

 

for t = 1,…,T. Distributional assumptions like (3.5) are necessary to 

implement MLE and imply the usual desired asymptotic properties of 

parameter estimates (Theil, 1971). 

In the application in section 4, graphs 1-4 show that prices and 

quantities have different trends and seasonalities that are mostly 

removed by double monthly-and-annual differencing,  12 1, where 1  

denotes 1-month forward differencing and 12  denotes 12-month forward 

differencing. Therefore, in the application, B was estimated with 

equation (3.3) in the differenced form 

 

(3.6)     12 1 tq   =  12 1 tp  +   12 1 t, 

 

with quality-accounting term  12 1 tz  omitted.  

To check that 12 1   differencing rendered residual vector   12 1 t̂ 

sufficiently IID, equation (3.6) was estimated undifferenced with t  

specified as a vector moving average (VMA) process with B and the VMA 

parameters estimated simultaneously by MLE. Because this resulted in 

effectively the same estimated B̂, the reestimation wasn't considered 

further and isn't reported. 

Differenced equation (3.6) is consistent with MFOC (2.8) if B is 

diagonal or if every scalar equation in vector equation (3.3) is 

differenced in the same way, which is the case in the application in 

section 4 for both of these reasons. Although in the application B was 

estimated with equation (3.6) using differenced and standardized data, 

GCES/COLI was computed with original, undifferenced, and 
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unstandardized data, so that computed GCES/COLI includes trends and 

seasonalities removed by the differencing. 

 

3.1.2. RLSE of substitution parameters in B. 

 

To compute GCES/COLI reliably and accurately, B̂ must satisfy the 

SOC, but might not unless ̂  is restricted. In order for B̂ to satisfy 

sufficient-for-SOC inequality (2.14), its eigenvalues must be real, 

positive, and sufficiently large. Because the eigenvalues of B̂ are 

reciprocals of the eigenvalues of ̂ , B̂ satisfies inequality (2.14) if 

and only if the eigenvalues of ̂  are real, positive, and not too 

large. 

To ensure that the eigenvalues of ̂  are real, ̂  can be restricted 

to be exactly or nearly symmetric. Compared with exact restrictions, 

weaker approximate restrictions lessen any perceived bias of estimates 

due to the restrictions being considered arbitrary. Approximate linear 

restrictions on coefficients can be imposed using Theil & Goldberger's 

(1961) mixed estimation (TGME), which amounts to adding "pseudo" data 

to actual data and estimating   and   exactly as in ULSE. The pseudo 

data reflect probabilistically specified restrictions according to 

specified "tightness" parameters, so that TGME is effectively a 

Bayesian estimation (Theil, 1971, pp. 346-351). 

If exactly or nearly symmetric ̂  has all real but some negative 

eigenvalues, then, ̂  can also be "regularized" as in ridge regression 

(Hoerl & Kennard, 1970a,b) to have all positive eigenvalues. This may 

require some trial and error, which may cause the final estimated ̂  

to be considered somewhat arbitrary. If not too many elements of B and 

  need to estimated, then, overall it may be easier, quicker, and 

statistically more coherent to estimate using MLE. 

 

3.1.3. MLE of substitution parameters in B. 
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   Assumptions (3.4)-(3.5) imply that MLE minimizes |ˆ | = 

|
T T

t tt 1
ˆ ˆ /T


  | with respect to elements of or parameters underlying B, 

restricted so that SOC hold, and elements of  , where tˆ  denotes the 

residual in estimated equation (3.3). If, as in the application in 

section 4, differenced data are used, then, MLE minimizes |   
12 1

ˆ | = 

|

     

T T

12 1 t 12 1 tt 1
ˆ ˆ /T|. In the application, SOC were enforced by 

parameterizing diagonal B as ii =   + 2i, for i = 1, ,8 and   = 

8
10 , and estimating i by MLE. 

 

3.2. Estimation of preferences and qualities. 

 

 We assume that 
T

t t 1{f}  are identified by 

 

(3.7)     
T

te f  = 0, 

 

for t = 1,…,T, where e = (1,…,
T

1)  = nx1. Restrictions (3.7) only 

prevent monotonic transformations of utility and leave indifference 

curves and optimal consumption of goods unchanged. Gabor-Toth & 

Vermeulen (2018) and Redding & Weinstein (2020) imposed the same 

restrictions for the same reason. 

 Suppose that  T

t t t 1{q , }  are at optimal values. If 
T

t t 1{f}  increase to 

 T

t t 1{ln(2)e f} , then, optimal consumption of goods is unchanged and the 

only change in the solution of the optimal consumption problem is that 

 T

t t 1{ }  decline to   T

t t 1{ln(.5) } . Condition (3.7) precludes such common 

changes of 
T

t t t 1{a ,r}  and also precludes changes in utility for "no 

apparent reasons". 
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   Consider MFOC (2.11) in estimated discrete-time form, premultiply 

it by 
T

(1/n)e , apply identifying condition (3.7), and obtain estimated 

 

(3.8)    t
ˆ  = T

t t
ˆ(1/n)e(Bq p ). 

 

Replace t
ˆ  in estimated discrete-time MFOC with the right side of 

equation (3.8) and obtain estimated 

 

(3.9)     tf̂  = t t
ˆM(Bq p ), 

 

for t = 1,…,T, where M  =  T

nI (1/n)ee . Premultiplying an n-row vector 

or matrix by M  transforms it into deviations from its column averages. 

   As in the application in section 4, assume that B̂ =  11 nn
ˆ ˆdiag( , , ) 

is diagonal with ii
ˆ  > 1. Then, estimated discrete-time row-wise 

equation (2.5) is 

 

(3.10)      itf̂  = itâ  + ii it
ˆ ˆ(1 )r , 

 

for i = 1,…,n and t = 1,…,T. 

   If da() and dr() entered FOC (2.9)-(2.10) in the same way through 

df(), then, 
T

t t 1{GCES/COLI }  could be computed without knowing the 

separate values of 
T

t t 1{̂a }  and 
T

t t 1{̂r} . However, because this isn't the 

case, because CFOC (2.10) depends only on dr(), 
T

t t 1{GCES/COLI}  can be 

computed only by knowing the separate values of 
T

t t 1{̂a }  and 
T

t t 1{̂r} . 

   We now describe a probabilistic method for estimating the separate 

values of 
T

tt t 1{̂a }  and 
T

t t 1{̂r} . Row-wise estimated equation (3.2) is 

 

(3.11)     itr̂  = Ti t
ˆ z  + it

ˆ , 
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for i = 1,…,n and t = 1,…,T, where Ti
ˆ  denotes the ith row of ̂ . We 

consider Ti t
ˆ z  as known (abstracting from sampling variability of i

ˆ ) 

and attribute all or most uncertainty about accuracy of itâ  and itr̂  as 

arising from it
ˆ . The probabilistic method first determines it

ˆ , then, 

determines itr̂  using equation (3.11) and, then, determines itâ  using 

equation (3.10). The reverse order of determination can be used if ii
ˆ  

  1 (more generally, if B̂   nI ); otherwise, itr̂  can't be determined 

from itâ . 

   Combined equations (3.10)-(3.11) imply that 

 

(3.12)      itf  = itâ  +  ii it
ˆ ˆ(1 ) , 

 

where itf  = itf̂  -  Tii i t
ˆ ˆ(1 ) z . Conditional on all data, 

T

t t t t 1{p ,q ,z } , the 

estimates  
n T

it i 1t 1{̂f } ,    n T

i i i 1t 1
ˆ ˆ{ , } , and  

n T

it i 1t 1{f }  are known. Therefore, 

conditional on all data, the expectation of the square of equation 

(3.12) is 

 

(3.13)     
2

itf  = 2âit + 
   ˆˆit ii ait it

ˆ2̂ (1 )  +  2

ii
ˆ(1 )


2ˆit ,  

 

where 2âit = 
2

it
ˆEa , 


2ˆit  = 2it

ˆE , itˆ  = 


  ˆˆit it ait it

ˆˆE(a )/ , and E denotes 

expectation conditional on all data (not unconditional expectation, E, 

without the overbar). The Cauchy-Schwarz inequality implies that itˆ   

[-1,1]. 

   Square roots of second moments about zero, âit and 
ˆit , must be 

nonnegative real numbers, which equation (3.13) implies occurs if and 

only if, respectively, 

 

(3.14)     


2ˆit   [0, 2 2

it iif /(1 ) ],  2âit  [0,
2

itf ]. 
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   Because squared means and variances sum to second moments about 

zero, 

 

(3.15)     2âit = 
2

âit + 
2

âit,   
2ˆit  = 

2ˆit + 
2ˆit, 

 

where âit = it
ˆEa , 2âit =   2

ˆit ait
ˆE(a ) , 


ˆit = it

ˆE , and 


2ˆit = 


   2

ˆit it

ˆE( ) . Thus, the data via itf  and ii
ˆ  restrict means and 

variances of itâ  and it
ˆ . 

   Whereas the values of itf  and ii
ˆ  are estimated using data, we 

proceed as if nothing is known about the separate values of itâ  and 

it
ˆ . Reflecting this lack of knowledge, we assume that 


2ˆit is at its 

maximum, so that equations (3.14)-(3.15) imply that 


2ˆit = 0 and 
2ˆit = 

2 2

it ii
ˆf /(1 ) . 

   We further assume that it
ˆ  is distributed uniformly over the finite 

interval [- itˆ , itˆ ] or it
ˆ  ~ UD[- itˆ , itˆ ]. An elementary integration 

shows that 


2ˆit = 2 2

it ii
ˆf /3(1 ) , which implies that itˆ  = it ii

ˆ3|f /(1 )|. 

Assuming that it
ˆ  ~ UD[- itˆ , itˆ ] corresponds to assuming an uninformed 

prior distribution in Bayesian estimation. We could instead assume 

that it
ˆ  is distributed unboundedly, so that it

ˆ   [- itˆ , itˆ ] with 

some probability less than one.   

   To compute the fully probabilistic estimate of GCES/COLI, first, 

for some chosen J   1, randomly (pseudo randomly in practice) draw 

nTJ values from UD[- itˆ , itˆ ] and assign them to   (j) n T J

it i 1t 1j 1{̂ } ; then, use 

the obtained   (j) n T J

it i 1t 1j 1{̂ }  and equations (3.10)-(3.11) to compute J  

values of 
T

t t t 1
ˆ ˆ{a ,r}  denoted  

(j) (j) T J

t t t 1j 1
ˆ ˆ{a ,r } ; then, use the computed values 
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of  
(j) (j) T J

t t t 1j 1
ˆ ˆ{a ,r }  to compute J  values of 

T

t t 1{GCES/COLI}  denoted 

 
(j) T J

t t 1j 1{GCES/COLI } , which comprise a J -value and T-dimensional 

distribution. Then, the fully probabilistic estimate of 
T

t t 1{GCES/COLI }  

is the arithmetic average of 
(j) T

t t 1{GCES/COLI }  over j = 1,…,J , 

 

(3.16)    
T

t t 1{C }  = 
(j)J T

t 1j 1 t
{( GCES/COLI )/J} . 

 

   If nTJ is large enough so that the time required to compute 
T

t t 1{C }  

is considered too long, then, the following approximately 

probabilistic estimate of 
T

t t 1{C }  can be computed more quickly. Define 

four cases of variations of   n T

it it i 1t 1
ˆ{̂a , } : 

 

(3.17)  
 


(a, | |) T

t t 1{C }  = 
T

t t 1{GCES/COLI}  for   n T

it it i 1t 1
ˆ{̂a , }  =    n T

it it i 1t 1
ˆ{̂a , | |} , 

 

(3.18)  
(a,0) T

t t 1{C }    =  
T

t t 1{GCES/COLI }  for   n T

it it i 1t 1
ˆ{̂a , }  =   n T

it i 1t 1{ ,0} , 

 

(3.19)  



(a,| |) T

t t 1{C }   =  
T

t t 1{GCES/COLI }  for   n T

it it i 1t 1
ˆ{̂a , }  =   n T

it it i 1t 1
ˆ{̂a ,| |} , 

 

(3.20)  
(0,0) T

t t 1{C }    =  
T

t t 1{GCES/COLI}  for   n T

it it i 1t 1
ˆ{̂a , }  =  

n T

i 1t 1{0,0} . 

 

In equations (3.17)-(3.19, itâ  is given by equation (3.12), 

respectively, for it
ˆ  =  it|̂ |, it

ˆ  = 0, and it
ˆ  = it|̂ |, for all i and 

t; in equation (3.20), both itâ  and it
ˆ  are zero for all i and t. 

   Although 
(0,0) T

t t 1{C }  contradicts data, because 
T

t t 1{f}  = 
T

nx1 t 1{0 }  never 

holds in practice, 
(0,0) T

t t 1{C }  is useful because it shows how 


T

t t 1{GCES/COLI}  changes when accounting for changes in preferences for 
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and qualities of goods is shut down. The application in  section 4 

reports 
T

t t 1{C }  for J  = 3 and 
(0,0) T

t t 1{C }  and discusses their differences. 

   Choose some J   max(3,n). For i = 1,…,n and t = 1,…,T, partition 

[- itˆ , itˆ ] into j = 1,…,J  equally-spaced points, including endpoints 

 itˆ  and midpoint 0. Assign each of the J  points to   (j) n T J

it i 1t 1j 1{̂ } , 

necessarily with repetition because nTJ  J . The assignments can be 

pseudo random or nonrandom in any order but preferably with minimal 

repetition. 

   Then, the approximate probabilistic estimate of 
T

t t 1{GCES/COLI}  

denoted by 
T

t t 1{C }  is the arithmetic average of the three cases (3.17)-

(3.19) with   (j) n T J

it i 1t 1j 1{̂ }  determined in each case as explained above. 

   We now derive an approximate upper bound for differences between 

true and estimated tln(GCES/COLI ) due to differences between true t 

and estimated t
ˆ . So far tc  = tln(C ) for tC  = 


n

it iti 1
P Q  and any 

observed 
n

it i 1{Q } , but now, more specifically, let tc  = tln(GCES/COLI ). 

Also, let 
T

t t 1{c }  = either 
T

t t 1{c }  or 
T

t t 1{c } , where tc  = ln( tC ) and tc  = 

ln( tC ) and let   (not 1 and 12 defined in section 3.1) denote 

differences between true and estimated (computed) tln(GCES/COLI ), so 

that  tc  = 
*

tc  - tc  and t = 
*

t - t
ˆ , where * denotes a true value. 

The t are implicitly in log form. Computing tc  means computing the 

mapping from data to 
T

t t 1{c } , which includes the 3-part composite 

submapping tc  = t
ˆF(G(H( ))), where tc  = tF(q ), tq  = tG(f), and tf  = t

ˆH( ). 

The tilded 
T

t t 1{q }  denote computed logs of quantities of goods according 

to MSP computation of GCES/COLI. 
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   Because the mappings tF(q ), tG(f), and t
ˆH( ) are twice differentiable, 

 tc  =  t
ˆF(G(H( ))) has the first-order Taylor approximation (Apostol, 

1974, pp. 113-114), given by 

 

(3.21)      tc        t t t t
ˆF(q ) G(f) H( ) , 

 

where  tF(q ) = 1t nt(S , ,S ) is the 1xn gradient vector of first-partial 

derivatives of tln(C ) = 


n

it iti 1
ln( P Q ) with respect to elements of tq  = 

T

1t nt(q , ,q ) , tilded itS  denote expenditure shares computed with   

observed itp  and computed itq ,  tG(f) = 

    
 
 
     

1t 1t 1t nt

nt 1t nt nt

q / f q / f

q / f q / f

 is the 

nxn Jacobian matrix of first-partial derivatives of tG(f) with respect 

to elements of tf , and  t
ˆH( ) = n ˆI B is the nxn Jacobian matrix of 

first-partial derivatives of t
ˆH( ) with respect to the elements of t

ˆ  = 

  T

1t nt
ˆ ˆ( , , ) . 

   The matrix-product-norm rule applied to equation (3.21) implies 

that     t t t t
ˆ|| F(q ) G(f) H( ) ||        t t t t

ˆ|| F(q )|||| G(f)|||| H( ) ||, where ||X|| = 

max  
m n

ij i 1j 1{|x |} } denotes the -norm of an mxn vector or matrix X  

(Golub & Van Loan, 1983, pp. 12-13). For   i t t
ˆh( )   [- it3|f |, it3|f |], 

where  t
ˆH( ) =    1 1t n nt

ˆ ˆ( h( ), , h ( )), equation (3.21) implies that 

 

(3.22)      t| c|  2 3  
n

it i 1max{S }     n n

it jt i 1j 1max{| q / f |}  

 

                            n n

ij ij i 1j 1
ˆmax{| |}  

n

it i 1max{|f |} . 
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Although inequality (3.22) has the advantage of being easy to derive 

and is robust because it's derived using a minimum of properties of 

tc , it's also the "most pessimistic" upper bound of accuracy of tc . 

   In the application in section 4, sample averages of shares of 

expenditures on goods are 1 8(S, ,S) = (.103, .114, .122, .137, .127, 

.155, .114, .128), so that we consider 
8

it i 1max{S }  = .155. Table 2 

implies that     8 8

ij ij i 1j 1
ˆmax{| |}  = 185.0 and approximation t||f||   

 2
1 ||R || implies that 

n

it i 1max{|f |}  = .837, where 
2

R  = (
2

1R ,…,
2

8R ). This 

last approximation possibly under- or over-states t||f|| because it 

includes the effect of variations in t on 
2

R . With  it jtq / f  given by 

elasticity equations (4.1)-(4.2), table 3 implies that 

   8 8

it jt i 1j 1max{| q / f |}  = .123. Thus, in the application, inequality (3.22) 

implies that  t| c|  10.2. Because in the application there was no 

convincing tz  to use for hedonic adjustment,  t| c|  10.2 reflects the 

largest possible it ~ UD[- itˆ , itˆ ] with no hedonic adjustment. 

   Inequality (3.22) is one of other possible measures of GCES/COLI 

accuracy. In an application, if inequality (3.22) implies that  t| c|  

 , where   is sufficiently small to indicate accuracy of tc , then, it 

makes no difference how t is estimated, how much or whether hedonic 

adjustment is done, so that any hedonic adjustment isn't worth doing. 

If   is considered large, such as   = 10.2, then, no conclusions can 

be drawn from inequality (3.22). 

   Inequality (3.22) could possibly be tightened up by using a 

different matrix norm or by exploiting the sizes of J  or J , the 

sampling variability of B̂, or other statistical properties of 

GCES/COLI. For example, in the application, estimated diagonal B̂ has 

some elements with large estimated standard errors. If ˆ||B|| were 

instead evaluated for only the 6x6 submatrix in table 3 with the 6 

smallest diagonal elements, then, inequality (3.22) would decline to 
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 t| c|  1.71, a still large upper bound, but one order of magnitude 

lower. Although hedonic adjustment has been advocated since Coats 

(1939), a general assessment of the contribution of hedonic adjustment 

the accuracy of a price index, like inequality (3.22), has apparently 

not been made before and warrants further study. 

   Different frequency components of 
T

t t 1{f}  could also be assigned 

separately to 
T

tt t 1{̂a }  and 
T

t t 1{̂r} , for example, according to trend, 

seasonal, and residual noise variations. For example, seasonal 

variations of 
T

t t 1{f}  could be assigned to 
T

tt t 1{̂a }  by first Fourier 

transforming 
T

t t 1{f}  to obtain its spectral density, then, assigning the 

seasonal bands of the spectral density of 
T

t t 1{f}  to the spectral 

density of 
T

t t 1{̂a } , and, then, inverse-Fourier transforming the spectral 

density of 
T

t t 1{̂a }  to obtain 
T

t t 1{̂a } . If the remaining trend and noise 

variations of 
T

t t 1{f}  can't be similarly and convincingly assigned to 


T

tt t 1{̂a }  and 
T

t t 1{̂r} , then, they can be handled as discussed above. 

   The fully-probabilistic and approximately-probabilistic estimates 


T

t t 1{C }  and 
T

t t 1{C }  of true 
T

t t 1{GCES/COLI }  discussed above could be 

modified and extended in various ways. The GCES/COLI method discussed 

above and illustrated in section 4 is intended to be only a start of 

an integrated and comprehensive method for computing an estimated 

COLI.    

 

3.3. MSP computation of GCES/COLI. 

 

 For given estimates B̂ and 
T

tt t t 1
ˆ ˆ{a ,r} , MSP computes 

T

t t 1{GCES/COLI }  by 

numerically integrating differential-equation system (2.11) for each 

sample period t = 1,…,T. Appendix C states a reduced version of the 

MSP order k = 4 computations that were used in in Chen & Zadrozny 

(2003) for a related production analysis. The reduction involves 
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reducing the 4th-order polynomial accounting of intra-period 

variations of exogenous variables to the first order.  

 

[Put table 1 here] 

 

 Table 1 states predicted accuracies   of MSP computations for 

different orders k , different numbers of steps h , and upper bound K = 

1 in inequality (B.6) in appendix B. In the table, achieving accuracy 

  for a particular k , requires h  = smallest integer  
 1/k

. For 

example, for K = 1, MSP of order k = 4 with h = 10 steps is predicted 

to compute GCES/COLI to within 4-decimal-digit accuracy and MSP of 

order k = 3 with h = 465 steps is predicted to compute GCES/COLI to 

within 8-decimal-digit accuracy. Because computations in finite-

precision arithmetic always accumulate some rounding errors, the 

errors in table 1 understate actual errors. Using related 

computational methods, Vartia (1983) considered k = 1 and large h and 

Dumagan & Mount (1997) and Breslaw & Smith (1995) considered k = 2 and 

large h. Sun & Xie (2013) analyzed the accuracies in these papers. 

Initial 1GCES/COLI  is computed in the application with initial 

observed quantities of goods, 
n

i1 i 1{Q } , because initial observed 

quantities are assumed to be optimally allocated by a representative 

consumer. In the application, GCESUF exists as a function, because the 

differential of GCSEUF is integrable, because B is diagonal. If GCESUF 

exists as a function, then, the COLI-constant level of utility over a 

sample of data can be computed according to initial utility based on 

observed quantities of goods. However, attempting to solve the COLI 

problem numerically using a known level of utility is generally 

impossible, because it's an n-dimensional nonlinear problem. GCES/COLI 

avoids having to solve this numerical problem. Instead of holding 

utility at the same level as initially over a sample of data, 

GCES/COLI computations keep utility from changing from the initial 

level over the sample. The level of utility is immaterial for 

computing GCES/COLI. Moreover, like any PI, GCES/COLI is normalized to 

one for the initial period. Before the normalization, 
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(3.19)    1GCES/COLI  = 


n

i1 i1i 1
P Q ,   

T

t t 2{GCES/COLI}  = 
n T

it it t 2i 1
{ P Q } , 

 

where  
n T

it i 1t 2{Q }  are computed as explained in appendix C. 

Symmetric B̂ simplifies conditions for GCESUF integrability and, 

thereby, simplifies computing GCES/COLI strictly correctly. If GCESUF 

is integrable, then, any connected path between two points of observed 

prices and estimated preferences and qualities results in the same 

correctly computed GCES/COLI. If GCESUF isn't integrable, then, MSP 

computations should strictly be based on the best estimated connected 

paths between points of prices, preferences, and qualities, which are 

obtained by estimating a continuous-time process of observed prices 

and estimated preferences and qualities (Zadrozny, 1988) and, then, 

using the estimated process to estimate connected paths between 

discrete points of the prices, preferences, and qualities. 

 

4. Application to 8 aggregate categories of goods. 

 

In this section, the paper applies GCES/COLI to U.S. monthly data on 

Törnqvist PIs (TORN/PI) and expenditures for 8 aggregate categories of 

goods and services (Apparel, Education, Food, Other Goods, Housing, 

Medical, Recreation, and Transportation) in the CPIU from January 1990 

to December 2008. The nominal-dollar TORN/PIs of the categories are 

considered to be prices of the categories and the nominal-dollar 

expenditures divided by the nominal-dollar TORN/PIs are considered to 

be their real quantities. 

Graphs 1-4 display the TORN/PIs and their implied quantities in 

standardized original units, in standardized differences of logs of 

original units ( 12 1ln  ), and their autocorrelations. The graphs show 

trends, seasonal variations, and irregular variations of the data. The 

graphs show that the 12 1ln   transformation renders prices and 

quantities IID except for possibly significant autocorrelations at 

monthly lags 1 and near 12. However, when the autocorrelations were 
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accounted for more carefully by re-estimating B along with parameters 

of a VMA process for t , the re-estimated B̂ was negligibly different 

and, therefore, wasn't considered further. 

 

[Put graphs 1-4 here] 

 

In the application, diagonal B was estimated by applying MLE to 

equation (3.3) with exogenous term  tz  omitted, using only price and 

quantity data in standardized 12 1ln   form, because it would be 

difficult to find convincing observed exogenous quality-related tz  for 

the 8 aggregate categories of goods. An attempt to estimate GCESUF for 

a full B matrix failed because the MLE computations stalled before 

converging to a proper maximum. Table 2 reports p values of Ljung-Box 

Q statistics of autocorrelations of residuals of individual equations 

at monthly lags 1-36, 
2

R  coefficients of determination of individual 

equations, and, estimated diagonal B̂. 

 

[Put table 2 here] 

 

 Table 2 shows that different categories of goods have different ii̂ , 

so that the estimated GCESUF is nonhomothetic and expenditure shares 

vary with expenditure levels. The p values of Ljung-Box statistics in 

table 2 indicate that residual autocorrelations are insignificant, so 

that assumption (3.5) that the disturbance vector t  ~ IID is 

acceptable. 
2

R  values in table 2 indicate that price variations 

account from about 30% to 70% of variations in quantities of goods. 

Elasticity responses of optimally consumed goods to varying prices 

and expenditure levels are determined for diagonal B as follows. 

Consider the dual of the consumer's primal optimal consumption problem 

in section 2: for a diagonal-B GCESUF, for given preferences for 

goods, qualities of goods, prices of goods and cost of expenditures on 

goods, a consumer purchases and consumes goods so as to maximize 
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utility. The dual problem has the same MFOC (2.1) as the primal 

problem, but has the expenditure line as the CFOC. 

The primal and dual problems have the same left-side system matrix 

B( )  as system (2.11). Preferences and qualities are now ignored, so 

that their logs are assumed to be constant at zero, 
T

t t 1{a }  = 
T

t t 1{r}  = 


T

nx1 t 1{0 } , and cost shares are set to sample averages, 
n

i i 1{S}  = 


T n

it i 1t 1
{ S /T} . The CFOC of the primal problem is constant utility; the 

CFOC of the dual problem is the expenditure line at a constant level 

of expenditures. The CFOC of the dual problem is put into primal 

system (2.11) simply replacing the bottom element on the right side 

with tdc . Then, using Laplace expansion of a determinant and Cramer's 

rule, the resulting system (2.11) is solved for tdq  in terms of tdp  

and tdc  and, in scalar partial-derivative (elasticity) form, the 

solution is 

 

(4.1)      it itq / p  = -  i i(1 ) < 0, 

 

(4.2)      it jtq / p  =   i j(1 ) > 0, 

 

(4.3)      it tq / c  = i/  > 0, 

 

for i,j = 1,…,n and i ≠ j, where i  = 1/ii > 0,   =  
n

k kk 1
S  > 0, 0 

< kS  < 1, 


n

kik 1
S  = 1, and 0 < i  =  i iS( / ) < 1. Inserting 

8

i i 1{S}  

computed with data and  8

ii i 1{̂ }  in table 3 into equations (4.1)-(4.3) 

gives the own-price, cross-price, and expenditure-level elasticities 

in table 3. 

 

[Put table 3 here] 
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 The own-price elasticities (4.1) in table 3 may be compared with 

Braithwait's (1980) own-price elasticities obtained using annual data, 

also on aggregate categories of consumer expenditures, although 

different ones. Braithwait obtained an average estimated own-price 

elasticity of -.400, compared with the average own-price elasticity of 

-.074 in table 3. Braithwait's larger absolute value makes sense, 

because consumers have more flexibility over a year than over a month 

to change their expenditure patterns. Because table 3 shows different 

estimated ii̂  for different categories of goods, the estimated GCESUF 

is nonhomothetic and, in its last column, table 3 shows the different 

nonunit expenditure-level elasticities (4.3) for the different 

categories of goods. 


T

t t 1{GCES/COLI }  was computed for t = 1 (January 1990), …, T = 228 

(December 2008). For the same period, Laspeyres and Törnqvist PIs were 

computed as 

 

(4.4)     tLASP/PI  = 
n

it it 1 iti 1
S (P /P ), 

 

(4.5)     tTORN/PI  = 



n (S S )/2it 1 it

it 1 iti 1
(P /P ) , 

 

where itS  = 

n

it it jt jtj 1
P Q / P Q . 

 Whereas 
T

t t 1{GCES/COLI}  are COLIs because, except for initial 

quantities of goods, 
n

i1 i 1{Q } , they're based on computed quantities of 

goods,  
n T

it i 1t 2{Q } , 
T

t t 1{LASP/PI }  and 
T

t t 1{TORN/PI }  generally aren't COLIs 

because they're based entirely on observed quantities,  
n T

it i 1t 1{Q } . 


T

t t 1{GCES/COLI }  explicitly accounts for changes in preferences for and 

qualities of goods. tTORN/PI , like Divisia PI that it approximates, 

implicitly accounts for changes in preferences for goods, but not for 

changes in qualities of goods. However, there's no way to check this 

for tTORN/PI , because it has no known underlying utility function. 
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 tLASP/PI  and tTORN/PI  are usually defined in terms of backward price 

relatives, it it 1P /P , but are here defined in terms of forward price 

relatives, i,t 1 i,tP /P , to be consistent with forward differences, 1  and 

12 . CPIU and chained CPIU (CCPIU) produced and released to the public 

by BLS are based on similar equations but with expenditure shares 

timed differently. See Klick (2018). The three indexes here all have 

expenditure shares in "current" periods t and so are "fully chained". 

The indexes are displayed in graphs 5 in differences between them in 

logarithmic form from January 1990 to December 2008. The indexes are 

graphed normalized, meaning divided by initial values, so that initial 

values are one. Graphs 5 depict tln(LASP/PI )- tln(GCES/COLI ) in the left 

graph and tln(GCES/COLI )- tln(TORN/PI ) in the right graph. Presumably, 

tLASP/PI  > tGCES/COLI  in all sample periods because tLASP/PI  reflects 

no substitutions of goods induced by relative price changes, whereas 

tGCES/COLI  reflects average own-price substitution elasticities of 

-.074. Presumably, tGCES/COLI  > tTORN/PI  in all sample periods, 

because tTORN/PI  reflects larger price substitution elasticities than 

tGCES/COLI . Because a tTORN/PI  can be derived from a CDUF, it's often 

assumed to reflect unit price elasticities, but a tTORN/PI  doesn't 

necessarily derive from a UF, like a CDUF, with unit price 

elasticities. tGCES/COLI  is seen in graph 5 to lie about halfway 

between tLASP/PI  and tTORN/PI  in all periods. 

 

[Put graphs 5 here] 

 

Graphs 6 depict estimated log-form (but not demeaned or 

standardized) preferences-plus-qualities,  
8 228

it i 1t 1{̂f } , implied by 

estimated diagonal B̂ in table 3 and shows generally nonzero means, 

approximately linear trends, and seasonal variations, the latter 

especially prominent for education and recreation. 
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[Put Figure 6 here] 

 

5. Conclusion. 

 

5.1. Summary of the paper. 

 

 The paper develops a new, general, practical, accurate, integrated, 

and comprehensive method for computing a cost of living index (COLI) 

based on an estimated generalized CES utility function (GCESUF). The 

GCES/COLI fully accounts for changes in preferences for and qualities 

of consumed goods (and services) in the computed GCES/COLI. The 

changes in preferences and qualities are integrated into the 

development and computation of GCES/COLI. Unlike in usual hedonic 

adjustment of prices of goods for changes in their qualities accounted 

for by hedonic regression of prices on tz , where tz  is a vector of 

observed variables that account for qualities of goods. GCES/COLI 

accounts for changes in qualities of goods by estimating a demand 

equation derived from first-order conditions (FOC) of the 

representative consumers' optimization problem that includes tz  as an 

explanatory variable and accounts for unobserved quality changes, t, 

probabilistically. 

 The paper illustrates GCES/COLI by estimating GCESUF by maximum 

likelihood for U.S. monthly data from the Bureau of Labor Statistics 

on prices and expenditures on 8 aggregate categories of goods in the 

consumer price index of urban consumers (CPIU) from January 1990 to 

December 2008. For the period, the resulting GCES/COLI lies about 

halfway between higher Laspeyres and lower Törnqvist PIs computed from 

scratch with the same data. The purpose of the application is only to 

illustrate GCES/COLI and isn't to compare it with CPIU and chained 

CPIU (CCPIU) produced and released to the public by BLS. See Klick 

(2018) for a discussion of recent CPIU and CCPIU. 
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5.2. Four possible extensions. 

 

5.2.1. Estimating a full matrix B. 

 

Iterative computations of MLE of substitution-parameter matrix B 

can fail by not converging when B is nondiagonal or much larger than 

the 8-dimensional B in the application in section 4. A properly set up 

Bayesian estimation shouldn't fail to estimate B of any size, at worst 

may be slow to compute, because Bayesian estimation doesn't need to 

optimize an estimation criterion function and satisfy its second-order 

conditions, but only needs to compute a numerical histogram of the 

posterior distribution of parameters and to compute its statistics of 

central tendency and dispersion. It would be interesting to compute 

GCES/COLI for more than 8 goods based on a full or fuller estimated B 

and compare it with standard formulaic PIs. 

 

5.2.2. Estimating a time-varying matrix B. 

 

Elements of time-varying tB  could be specified as generated by 

independent random walks, 

 

(5.1)     vech( tW ) = vech( t 1W ) + t, 

 

where tW  = lower-triangular Cholesky factor of symmetric 
1

tB

, vech( tW ) 

= column vectorization of the nonzero lower-triangular elements of tW , 

t ~ NIID(0,  ), and   = diagonal with positive diagonal elements. 

 Specification (5.1) could be estimated either using MLE or a 

Bayesian method, in terms of diagonal elements of  . With constant B, 

GCES/COLI accounts for time-varying slopes of indifference curves only 

with estimated time-varying preferences and qualities, tâ  and t̂r . With 

estimated time-varying tB̂  = 
T 1

t t
ˆ ˆ(W W ) , GCES/COLI would account with time-
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varying tW  both for time-varying slopes and for time-varying 

curvatures of indifference curves, which should result in more 

accurate GCES/COLI. 

 

5.2.3. Handling turnover of goods. 

 

 Turnover of goods means either "old" goods are removed from an 

index, "new" goods are added to an index, or old goods are replaced in 

an index by new versions. Supplying firms decide when and at what 

minimal levels of sales goods are withdrawn from and introduced to 

consumers. Because the minimal levels are always nonzero, GCES/COLI 

can handle turnover without essential change. Turnover isn't 

considered in the application in section 4 because it would be 

artificial to omit some aggregate category of expenditures from 

GCES/COLI from an initial part of the sample of data and, then, 

include it in the remaining part of the sample or vice versa. 

   Old good removed: If old good n is removed from GCES/COLI at the 

beginning of period t+1, then, the dimensions of B and of vectors and 

matrices in GCES/COLI computations decrease by one but otherwise the 

computations don't change. Values of elements of B of remaining goods 

can be kept or somehow determined but can't be meaningfully estimated 

in the new situation until enough new data have accumulated. 

   New good added: If new good n+1 is added to GCES/COLI at the 

beginning of period t+1, then, the dimensions of B and of vectors and 

matrices in GCES/COLI computations increase by one but otherwise the 

computations don't change. Values of elements of B of previously 

available goods can be kept or somehow determined along with elements 

of the new good but can't be meaningfully estimated in the new 

situation until enough new data have accumulated. 

   Old good replaced: If old good n is replaced in GCES/COLI by a new 

version, then, nothing changes in GCES/COLI computations. The previous 

value of B can be kept or somehow determined, but can't be 

meaningfully estimated in the new situation until enough new data have 

accumulated. 
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5.2.4. Computing a monetary-financial services index. 

 

It would be interesting to compute a monetary-financial services 

quantity index based not on the Törnqvist index as Barnett (2011) does 

(although he calls the Törnqvist index a Divisia index), but on a 

quantity index corresponding to GCES/COLI and, thereby, account in the 

index for changes in preferences for and qualities of different 

monetary and financial assets as in GGES/COLI, for any reasons such as 

changes in perceived risks, changes in regulations, changes in 

technology, etc. 
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Table 1: Predicted accuracies of MSP computations. 

 

Accuracy order   Polynomial order k  Step size 
1

h  Number of steps h  

 

Semi-single 

decimal-digit 

precision of 

order 
4

10  

1 1.0010-4 104 

2 1.0010-2 

 

102 

3 4.5510-2 

 

22 

4 1.0010-1 

 

10 

5 1.4310-1 

 

7 

6 2.0010-1 5 

 

Single 

decimal-digit 

precision of 

order 
8

10  

1 1.0010-8 108 

2 1.0010-4 104 

3 2.1510-3 465 

4 1.0010-2 100 

5 2.5010-2 40 

6 4.5510-2 22 

 

Double 

decimal-digit 

precision of 

order 
16

10  

1 1.0010-16 1016 

2 1.0010-8 108 

3 4.6410-6 215,444 

4 1.0010-4 104 

5 6.3110-4 1585 

6 2.1510-3 465 
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Table 2: MLE statistics of estimated diagonal B. 

 

Aggregate 

expenditure 

categories 

p values 

of Q 

statistic 

2

iR  
Estimated

ii̂  

Apparel .267 .324 37.8 

Education .787 .312 8.04 

Food .745 .480 9.62 

Other Goods .239 .583 32.1 

Housing .181 .301 13.7 

Medical .135 .494 151. 

Recreation .487 .548 186. 

Transportation .066 .699 31.9 
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Table 3: Price and expenditure elasticities (4.1) - 

(4.3) implied by estimated diagonal B in table 2. 

 

qi pa pe pf pg ph pm pr pt c 

 Appa Educ Food Good Hous Medic Recr Tran Expe 

Apparel -.123 .012 .013 .015 .015 .019 .006 .018 1.76 

Education .013 -.059 .006 .007 .007 .009 .003 .008 .746 

Food .015 .006 -.062 .008 .008 .010 .003 .010 .801 

Other Goods .021 .009 .009 -.073 .011 .015 .004 .013 .990 

Housing .018 .008 .008 .010 -.071 .013 .004 .012 .941 

Medical .029 .012 .013 .016 .016 -.086 .006 .019 1.24 

Recreation .001 .003 .003 .004 .003 .004 -.030 .004 .367 

Transportation .022 .009 .010 .012 .012 .016 .005 -.084 1.14 
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Graphs 1: Standardized Pit and 121ln(Pit) of Apparel, 

Education, Food, and Other Goods and their 

autocorrelations, 1/1990,…,12/2008. 

Price Level Apparel

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Price Level Apparel

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Dif Apparel

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Dif Price Apparel

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Level Education

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Price Level Education

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Dif Education

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Dif Price Education

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Level Food

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Price Level Food

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Dif Food

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Dif Price Food

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Level Other Goods

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Price Level Other Goods

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Price Dif Other Goods

1990 1993 1996 1999 2002 2005 2008

-3

-2

-1

0

1

2

3

Auto Cors Dif Price Other Goods

0 5 10 15 20 25 30 35

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

 



43 

 

Graphs 2: Standardized Pit and 121ln(Pit) of Housing, 

Medical, Recreation, and Transportation and their 

autocorrelations, 1/1990,…,12/2008. 
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Graphs 3: Standardized Qit and 121ln(Qit) of Apparel, 

Education, Food, and Other Goods and their 

autocorrelations, 1/1990,…,12/2008. 
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Graphs 4: Standardized Qit and 121ln(Qit) of Housing, 

Medical, Recreation, and Transportation and their 

autocorrelations, 1/1990,…,12/2008. 
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Graphs 5: ln(LASP/PIt)-ln(GCES/COLIt) (left) and 

ln(TORN/PIt)-ln(GCES/COLIt) (right), 1/1990,…,12/2008. 
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Graphs 6: Estimated log-form preferences-plus-

qualities, 1tf̂ ,…, 8tf̂ , 1/1990,…,12/2008. 

 

1.  Apparel
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

5.  Housing
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

2.  Education
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

6.  Medical
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

3.  Food
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

7.  Recreation
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

4.  Other Goods
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

8.  Transportation
.

1991 1995 1999 2003 2007

-20

-15

-10

-5

0

5

10

15

20

 



47 

 

APPENDICES A-D. 

 

Appendix A: Proof that inequality (2.14) implies SOC. 

 

 Sufficient condition (2.13) for the second-order condition (SOC) of 

the consumer's optimization problem, stated for simplicity without 

time argument , is 

 

(A.1)     B = 
 
 
 

T

B e

S 0
 < 0 (negative definite), 

 

where B = nxn, e = (1,…,
T

1)  = nx1, S = 1(S ,…,
T

nS ) , iS  > 0, and 


n

ii 1
S  

= 1. Condition (A.1) hold if and only if 

 

(A.2)     -
T
x Bx + 

T
x ey + 

T
yS x = -

T
x Bx +  T

y(S e)x < 0, 

 

for any x = nx1 and scalar y both not zero. If B > 0 (positive 

definite), then, inequality (A.2) holds if and only if  T
y(S e)x is 

positive and not too large. To determine what "not too large" means, 

first, consider x and y normalized as 

 

(A.3)     
T
x x + 

2
y   = 1, 

 

with no loss of generality because (A.2) is homogeneous in x and y. 

We consider inequality (A.2) as  T
y(S e)x < 

T
x Bx and determine an 

upper bound for 

 

(A.4)     f  =  T
y(S e) x  =  Tx ,  
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where   = 2
y   (0,1) and  = S e. We maximize f  sequentially with 

respect to x,  , and S. For given   and S , f  is maximized when x 

points in the same direction as , so that x = c  and, because 
T
x x = 

1 -  ,  2 T
c  = 1 -  , c  =    T(1 )/( ), and maximized f  =     T(1 )( ). 

Now, f  is further maximized when   = 1/2, so that 

 

(A.5)     f  =  T( )/2 =  T
(S e)(S e)/2. 

 

Finally, maximizing  T
(S e)(S e) with respect to iS  implies iS  = 1/n, for 

i = 1,…,n, or S = e/n, so that 

 

(A.6)     f  =   
  

T T T
S S 2S e e e /2 =    (1/n) 2 n /2. 

 

For the n = 8 in the application, (A.6) implies 

 

(A.7)     f  =  
 81/8 /2 = 1.591. 

 

Now, 
T
x Bx is minimized for 

T
x x = 1-   = 1/2 when x is the 

eigenvector of the smallest positive eigenvalue of B, which in Table 2 

is 8.04. Therefore, in the application, the minimum 
T
x Bx, for 

T
x x = 

1/2, is 8.04/2 = 4.02 > 1.591, so that inequality (A.2) holds and 

sufficient condition (A.1) for SOC holds in the application.  

 

Appendix B: Review of matrix differentiation. 

 

B.1. Definitions of matrix derivatives. 

 

Let A(x)  Dk: Rn  Rpq be a K-times differentiable pq matrix 

function of the n1 vector x. A(x) could be a function of the matrix X 
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 Rkm, such that x = vec(X), where vec() is the columnwise 

vectorization of a matrix. We consider derivatives of elements of A 

with respect to elements of x in three forms:  partial derivative 

form, d differential form, and  Jacobian form. 

For k = 1, ..., K and i1, ..., ik  {1, ..., n}, we define 
k

ki1i  A 

 Rpq by 

 

(B.1)     
k

ki1i  A = 











































ki1i

pq

k

kiii

1p

k

ki1i

q1

k

ki1i

11

k

xx

A

xx

A

xx

A

xx

A













, 

 

as the partial derivative form of k-th order partial derivatives of 

the elements of A with respect to 
1i

x , ..., 
ki

x . 

The differential form associated with (B.1) is 

 

(B.2)     dkA =  


n

1ki ki1i

n

11i
 Ad

1i
x  d

ki
x , 

 

where the dxi's are small (infinitesimal, i.e., nonzero but approaching 

zero) increments to the elements of x = (x1, ..., xn)
T.  

The Jacobian form associated with (B.1) and (B.2) can now be 

built up recursively, starting with k = 1. We call the matrix 

representation of kth derivatives of a vector function or a 

vectorization of a matrix function a "k-Jacobian," which generalizes 

common terminology: for a scalar-valued function, the 1-Jacobian is a 

gradient vector of first-partial derivatives and the 2-Jacobian is the 

Hessian matrix of second-partial derivatives. 

We use the following rule for vectorizing matrix products, 

 

(B.3)     vec(ABC) = [CT  A]vec(B), 
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where A, B, and C are matrices conformable to the matrix product ABC 

and  denotes the Kronecker matrix product (Magnus and Neudecker, 

1988, p.30). 

 

B.2. Representations of matrix derivatives. 

 

For k = 1, (B.1) and (B.2) become 

 

(B.4)     iA = 











































i

pq

i

1p

i

q1

i

11

x

A

x

A

x

A

x

A







, 

 

(B.5)     dA =  

n

1i
iAdxi. 

 

Note that vectorization, summation, and differentiation 

operations are commutative, i.e., can be applied in any order. 

Therefore, we vectorize (B.5), to obtain 

 

(B.6)     vec(dA) = [1vec(A), ..., nvec(A)]dx, 

 

where dx = (dx1, ..., dxn)
T, so that 

 

(B.7)     vec(dA) = Adx, 

 

(B.8)     A = [1vec(A), ..., nvec(A)]. 

 

Equations (B.7) and (B.8) relate the , d, and  forms of first-order 

derivatives of A to each other. 

To obtain analogues of (B.7) and (B.8) for k = 2, we 

differentiate them to obtain 
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(B.9)     vec(d2A) = d(A)dx, 

 

(B.10)    d(A) = [d(vec(1A)), ..., d(vec(nA))] 

 

                =  

n

1j
[j(vec(1A)), ..., j(vec(nA))]dxj. 

 

Then, we vectorize (B.10) to obtain 

 

(B.11)  vec(d(A)) =  

n

1j























))A(vec(

))A(vec(

nj

1j

 dxj = 

























))A(vec())A(vec(

))A(vec())A(vec(

nnn1

1n11







dx. 

 

Then, because vec(A) = 























))A(vec(

))A(vec(

n

1

  = 























)A(vec

)A(vec

n

1

 , we obtain 

 

(B.12)    vec(d(A)) = [1vec(A), ..., nvec(A)]dx. 

 

Continuing in this manner for k = 2, ..., K, we obtain 

 

(B.13)    vec(d(k-1A)) = kAdx, 

 

(B.14)    vec(dkA) = [(k-1  dxT)  Ipq]kAdx, 

 

where k-1  dxT denotes k-2 successive Kronecker products of dxT (0  

dxT = dxT, 1  dxT = dxT  dxT, ...), and 

 

(B.15)    kA = [1vec(
k-1
A), ..., nvec(k-1A)]. 

 

Applied for k = 1, ..., K, (B.15) recursively organizes a Jacobian 

form of derivatives of A up to order K as matrices. That is, kA is the 
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Jacobian matrix of the vectorization of k-1A, is the Jacobian matrix 

of the vectorization of k-2A, etc. 

 

B.3.  Rules of matrix differentiation. 

 

Let A(x)  D: Rn  Rp and B(y)  D: Rp  Rq be differentiable 

vector functions (or vectorizations of matrix functions). Let C(x)  

D: Rn  Rq be the differentiable composite vector function C(x) = 

B(A(x)). Then, the Jacobian form of derivatives of C(x) is given by 

the chain rule of differentiation, 

 

(B.16)    C(x) = B(A)A(x). 

 

Let A(x)  D: Rn  Rpq and B(x)  D: Rn  Rpq be differentiable 

matrix functions conformable to the ordinary matrix product C(x) = 

A(x)B(x). Then, the differential form of derivatives of C(x) is given 

by the product rule of differentiation, 

 

(B.17)    dC(x) = dA(x)B(x) + A(x)dB(x). 

 

Rules (B.16) and (B.17) are quickly proved by elementwise 

application of the scalar chain rule of differentiation and the scalar 

product rule of differentiation. See Magnus & Neudecker (1988). 

 

Appendix C: MSP computation of GCES/COLI. 

 

Appendix B explains definitions and rules of matrix 

differentiation and should be skimmed before reading this appendix C. 

Equations in this appendix are derived in differential form and as few 

as possible are further converted to Jacobian form. Infinitesimal 

differentials are strictly uncomputable but finite-valued Jacobians 

are computable. However, differentials considered as finite 

approximations of infinitesimal changes are computable. We could 
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convert all expression in differentials to expression in Jacobians, 

but doing so would introduce much more complicated algebraic 

expressions to compute, with multiple Kronecker products that are more 

difficult to program. Chen and Zadrozny (2003) follow this approach. 

To avoid these complications, in this paper, we compute entirely in 

differential form, which corresponds to computing in forward mode of 

automatic or algorithmic differentiation, the preferred method for 

computing accurately and quickly (Griewank, 2000). 

We express first-order conditions (FOC) of the representative 

consumer's primal optimization problem in differential form of 

equation (2.11) more compactly as 

 

(C.1)     F(y(s),x(s))dy(s) = G(y(s),x(s))dx(s), 

 

y(s) =  T

1 n(q(s), ,q (s), (s))  = nx1, x(s) = 1 n 1 n(p(s), ,p(s),a(s), ,a(s), 

T

1 nr(s), ,r(s))  = 3nx1, and the details of F() =  (n 1)x(n 1) and G() = 

(n 1)x3n can be seen in system (2.11). We say that y(s) is "endogenous" 

because dy(s) is determined by solving and integrating equation (C.1) 

using MSP, for given exogenous x(s) and dx(s). Because GCESUF is 

differentiable any desired number of times, so are F() and G(). 

Equation (C.1) has the unique solution 

 

(C.2)     dy(s) = H(y(s),x(s))dx(s), 

 

where H(y(s),x(s)) = 
1

F(y(s),x(s)) G(y(s),x(s)) or H(s) = 
1

F(s) G(s). Dividing dy(s) 

and dx(s) by ds converts them to continuous-time derivatives, but, even 

without explicit division by ds, dy(s) and dx(s) can be considered 

continuous-time derivatives. 

For s  [t,t+1), we want to compute yt = yt+1 - yt = 




1t

ts
)s(dy . Let 

y(s) and ŷ(s) denote true and computed (estimated, approximate) 

solution paths of y, for a given path of x(s). The implicit function 
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theorem (Apostol, 1974, pp. 373-375), upon which the MSP method is 

based, implies that because GCESUF is differentiable any number of 

times and satisfies the second-order conditions (SOC), the solution of 

the consumer's optimization problem has a unique interior solution. 

Then, the solution path is differentiable the k+1 desired number of 

times, integrates as 




1t

ts
)s(dy , and, for s  [t,t+1), has the kth-order 

polynomial (Taylor series) approximation 

 

(C.3)     ŷ(s) = yt + yt(s-t) + (1/2!)2yt(s-t)
2 + ... + (1/k!)kyt(s-t)

k, 

 

where yt, ..., kyt are (n+1)1 coefficients to be determined in terms 

of exogenous observed prices and quantities and estimated preferences 

and qualities. We treat the true y and x processes and their 

polynomial interpolates as differentiable continuous-time processes in 

s  [t,t+1) and as discrete-time processes in t = 1, ..., T. Ford 

(1955) discusses connections between continuous and discrete processes 

and their polynomial interpolates. Following equation (C.4), we could 

approximate yt as t
ŷ  = 





1t

ts
)s(ŷd  = yt + (1/2!)2yt + ... + (1/k!)kyt, 

which has the accuracy  = |yt - t
ŷ | = (1/(k+1)!)|k+1y()|, for   

(t,t+1) (Apostol, 1974, pp. 241-242). 

For each period t and a chosen positive integer h, we partition 

the period into h subperiods of equal length 1/h as [t,t+1) = 


h

1i
[ti,ti+(1/h)), where [ti,ti+(1/h)) = [t+(i-1)/h,t+(i/h)), for i = 

1,...,h. For each subperiod ti = t1,...,th in period t, we compute the 

y coefficients, 
it

y ,...,
it

k
y , recursively and approximate yt as 

 

(C.4)     
t

ŷ  =  


h

1i it
ŷ , 

 

          
it

ŷ  = 




)h/i(t

)h/)1i(ts
)s(ŷd  = 

1
(1/ !)

i

k j j

tj
j y h


 . 
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We now explain the MSP method for computing the y coefficients, 

it
y ,...,

it

k
y , when k = 4. We consider approximate y process (C.3) for 

k = 4, differentiate it four times, and obtain differentials (C.5). We 

differentiate differential (C.2) of the unknown true y process three 

more times and obtain differentials (C.6) of y in terms of the 

differentials of H(s) and dx. We derive differentials of H(s) in 

equations (C.6) in terms of differentials of F(s) and G(s). We 

consider 1st-order exogenous process (C.9) with two coefficients. 

Finally, we discuss combining these results and computing the 

coefficients of approximate y(s) process (C.3), hence, computing yt 

according to equation (C.4). 

 For k = 4, s  [ti,ti+h), and ti = t1,...,th, differentiating 

approximate y process (C.3) four times with respect to s implies 

 

(C.5)    d ŷ(s) = 
it

y  + 
it

2
y (s-ti) + (1/2)

it

3
y (s-ti)

2 + (1/6)
it

4
y (s-ti)

3, 

 

         d2 ŷ(s) = 
it

2
y  + 

it

3
y (s-ti) + (1/2)

it

4
y (s-ti)

2, 

 

         d3 ŷ(s) = 
it

3
y  + 

it

4
y (s-ti), 

 

         d4 ŷ(s) = 
it

4
y . 

 

For each s = ti = t1,...,th, we compute the y coefficients, 

it
y ,...,

it

4
y , so that they are equal to the 1st to 4th differentials 

of true y process (C.2). 

Using the product rule of differentiation (B.17) to differentiate 

equation (C.2) three times and assuming that the exogenous x(s) 

process is linear in s, so that its differentials beyond the first one 

are zero, implies that 

 

(C.6)   d2y(s) = dH(s)dx(s), 

 

        d3y(s) = d2H(s)dx(s), 
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        d4y(s) = d3H(s)dx(s), 

 

where H(s)  F(y(s),x(s))-1G(y(s),x(s)). 

 Repeatedly applying the product rule of differentiation to F(s)H(s) 

= G(s), implies that F(s)H(s) + F(s)dH(s) = dG(s), d2F(s)H(s) + 

2dF(s)dH(s) + F(s)d2H(s) = d2G(s), and d3F(s)H(s) + 3d2F(s)dH(s) + 

3dF(s)d2H(s) + F(s)d3H(s) = d3G(s). Then, solving for dH(s), d2H(s), and 

d3H(s), implies that 

 

(C.7)     dH(s) = F(s)-1[dG(s) - dF(s)H(s)], 

 

          d2H(s) = F(s)-1[d2G(s) - d2F(s)H(s) - 2dF(s)dH(s)], 

 

          d3H(s) = F(s)-1[d3G(s) - d3F(s)H(s) - 3d2F(s)dH(s) 

 

                  - 3dF(s)d2H(s)]. 

 

Equations (C.7) are recursive. For given GCESUF, we compute F(s), 

G(s), and H(s). Then, we compute dF(s), dG(s), and dH(s). Then, we 

compute d2F(s), d2G(s), and d2H(s). Finally, we compute d3F(s), d3G(s), 

and d3H(s). 

For k = 1, 2, and 3, dkF(s) and dkG(s) are 

 

(C.8)     dkF(s) = 
 
 
 

nxn nx1

k T

1x1

0 0

d S(s) 0
,   dkG(s) = 

 
 
 

nx2n nxn

k T

1x2n

0 0

0 d S(s)
. 

 

We assume x(s) follows a 1st-order polynomial for s  [t,t+1) and 

t = 1,...,T, 

 

(C.9)     x(s) = 
!

tx  + xt(s-t), 
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with n1 coefficient 
!

tx  and xt. Whereas exogenous coefficients remain 

at initial values, indexed at t1 = t, throughout computations in period 

t, y coefficients 
it

y ,...,
it

4
y  are indexed by ti and updated at each 

iteration i = 1,...,h. From x(s) process (C.9), we require only that 

it passes through initial and ending x(s) in period t, i.e., x(t) = 
!

tx  

and x(t+1) = xt+1. 

For k = 4 and s  [t,t+1), differentiating x(s) process (C.9) 

with respect to s, implies that 

 

(C.10)    dx(s) = xtdx. 

 

 In seven numbered steps, we now discuss the details of computing yt 

iteratively, for ti = t1,...,th. The steps pertain to any period t = 

1,...,T and are recursive, so that every step can be completed as long 

as the previous steps have been completed. 

 

Step 1: Initialize yt and xt and their differentials. 

 

For s = t1 = t, compute y(s) = yt, x(s) = xt. By equation (C.10), 

set dx(s) = xtds. 

 

Step 2: Compute 1st-order y coefficient. 

 

Because true and approximate y processes are evaluated at the 

same times, s = ti = t1,...,th, in all remaining steps y differentials 

and coefficients equate as dky(ti) = 
it

k
y ds. Thus, using equation 

(C.2), the first equation of (C.5), equation (C.10), and tx  = tx  = 

1tx   - 
!

tx , compute 

 

(C.11)    H(yt,xt) = F(yt,xt)
-1G(yt,xt), 

 

          yt = H(yt,xt) tx . 
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Step 3. Compute 2nd-order y coefficient. 

 

Compute 

 

(C.12)     dF(s) = 
 
 
 

nxn nx1

T

1x1

0 0

dS(s) 0
,   dG(s) = 

 
 
 

nx2n nxn

T

1x2n

0 0

0 dS(s)
. 

 

Following the first equation of (C.7), compute 

 

(C.13)    dH(yt,xt) = F(yt,xt)
-1[dG(yt,xt) - dF(yt,xt)H(yt,xt)]. 

 

Following the second equation of (C.5), the first equation of (C.6), 

equation (C.15), and, using d2y(t1) = 2yt, compute 

 

(C.14)    2yt = dH(yt,xt)dxt + H(yt,xt)d
2xt. 

 

Step 4: Compute 3rd-order y coefficient. 

 

Following equation (C.8), compute 

 

 

(C.15)     d2F(s) = 
 
 
 

nxn nx1

2 T

1x1

0 0

d S(s) 0
,   d2G(s) = 

 
 
 

nx2n nxn

2 T

1x2n

0 0

0 d S(s)
. 

 

 

Following the second equation of (C.7), compute 

 

(C.16)    d2H(yt,xt) = F(yt,xt)
-1[d2G(yt,xt) - d

2F(yt,xt)H(yt,xt) 

 

                      - 2dF(yt,xt)dH(yt,xt)]. 

 



59 

 

Following the third equation of (C.5), the second equation of (C.6), 

equation (C.15), and, using d3y(t1) = 3yt, compute 

 

(C.17)    3yt = d
2H(yt,xt) tx  

 

Step 5: Compute 4th-order y coefficient and update y. 

 

Following equation (C.8), compute 

 

(C.18)    d3F(s) = 
 
 
 

nxn nx1

3 T

1x1

0 0

d S(s) 0
,   d3G(s) = 

 
 
 

nx2n nxn

3 T

1x2n

0 0

0 d S(s)
. 

 

Following the third equation of (C.7), compute 

 

(C.19)   d3H(yt,xt) = F(yt,xt)
-1[d3G(yt,xt) - d

3F(yt,xt)H(yt,xt) 

 

                  - 3d2F(yt,xt)dH(yt,xt) - 3dF(yt,xt)d
2H(yt,xt)]. 

 

Following the fourth equation of (C.5), the third equation of (C.6),  

equation (C.15), and, using d4y(t1) = 4yt, compute 

 

(C.20)    4yt = d
3H(yt,xt) tx  . 

 

Following equations (C.4), compute 

 

(C.21)    
t

ŷ  = 
t

y h-1 + (1/2)
t

2
y h-2 + (1/6)

t

3
y h-3 + (1/24)

t

4
y h-4 

 

and update y as 
2t

y  = yt + t
ŷ . 

 

Step 6: Update 
2t

x  and y. 
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For s = t2 = t + 1/h, following equations (C.9) and (C.10), 

update exogenous variables and their differentials, as 

 

(C.22)   
2t

x  = 
!

tx  + xt(1/h), 

 

such that coefficient xt remains at initially computed values. For s = 

t2, repeat steps 2 to 5 and update y coefficients to 
2t

y , ...,
2t

4
y . 

Following equation (C.21), compute 
2t

ŷ  = 
2t

y h-1 + (1/2)
2t

2
y h-2 + 

(1/6)
2t

3
y h-3 + (1/24)

2t

4
y h-4 and update y as 

3t
y  = 

2t
y  + 

2t
ŷ . 

 

Step 7: Repeat steps 2 to 6. 

 

For s = t3 = t + 2/h, update exogenous variables and their 

differentials, as 

 

(C.23)   
3t

x  = 
!

tx  + xt(2/h). 

 

For s = t3, repeat steps 2 to 5 and update y coefficients to 

3t
y ,...,

3t

4
y . Compute 

3t
ŷ  = 

3t
y h-1 + (1/2)

3t

2
y h-2 + (1/6)

3t

3
y h-3 + 

(1/24)
3t

4
y h-4 and update y as 

4t
y  = 

3t
y  + 

3t
ŷ . Repeat these steps for s 

= t4 = t + 3/h, ..., s = th = t + (h-1)/h. At the last step, compute 

ht
ŷ . 

 MSP computations are carried out with the two nested loops: outer 

loop indexed by sample periods t = 1,...,T and inner loop indexed by 

number of MSP steps per period i = 1,...,h.   

 

Appendix D: Proof of MSP global accuracy of order h-k. 

 

 Let f(x) denote a real-valued scalar function of real number x. The 

same proof holds with more complicated notation if x and f(x) are 
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finite-dimensional vectors. For simplicity, but without losing its 

essence, we give the proof in the purely scalar case. 

 Suppose that f(x) is k+1 times differentiable for x  0 h[x ,x ] = 

{x| 0x  x  hx }, that f(x) can be evaluated at some center point of 

approximation x = 0x , and that derivatives 
(j)
f (x) of f(x), for j = 

1,…,k+1, can be evaluated for x  0 h[x ,x ]. Then, hf(x ) has the kth-

order Taylor approximation centered at 0x ,  

 

(D.1)     
(SSP,k)

hf̂ (x ) = 0f(x ) + 
 
k (j) j

0 h 0j 1
(1/j!)f (x )(x x ), 

 

with approximation error 

 

(D.2)     
(SSP,k)

h
ˆ (x )  = 

   (k 1) k 1

h 0(1/(k 1)!)f ( )(x x) , 

 

for   0 h(x ,x ) = {x| 0x < x < hx } (Apostol, 1974, pp. 113-114). We 

denote (D.1) with superscript SSP because it's a "single-step 

perturbation" (Chen & Zadrozny, 2003). 

 Partition 0 h[x ,x ] into h subintervals as 0 h[x ,x ] = 
h

i 1 ii 1
[x ,x ]

 of 

equal length i i 1|x x | = h 0|x x |/h, for i = 1,…,h. Then, the kth-order 

MSP approximation of hf(x ) centered at 0x  is 

 

(D.3)     
(MSP,k,h)

hf̂ (x ) = 0f(x ) +     
h k (j) j

i 1 i i 1i 1 j 1
(1/j!)f (x )(x x ) , 

 

with approximation error 

 

(D.4)     
(MSP,k,h)

h
ˆ (x )  = 

   


  
h (k 1) k 1 (k 1)

i h 0i 1
(1/(k 1)!)f ( )(x x ) h , 

 

for i   i 1 i(x ,x ) . If h = 1, then, MSP (D.3)-(D.4) reduce to SSP 

(D.1)-(D.2). Suppose, for given k , h , and i   i 1 i(x ,x ) , for i = 

1,…,k , that there is an upper bound K > 0 such that 
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(D.5)     

  



(k 1) k 1

i h 0f ( )(x x )

(k 1)!
 ≤ K. 

 

Then, the triangle inequality applied to equation (D.4) implies that 

 

(D.6)     |
(MSP,k,h)

h
ˆ (x ) | = | hf(x ) - 

(MSP,k,h)

hf̂ (x )| ≤ 
k

Kh . 

 

 If f(x) is analytic, then, for given h 0(x x ) , (SSP,k) h
ˆ (x ) can be made 

arbitrarily small only by increasing k , which is expensive because it 

involves deriving, programming, and computing with higher-order 

derivatives of f(x). Therefore, SSP is "expensively dependent" on 

h 0(x x )  and is a "local approximation". 

 Whether f(x) is analytic or not, for given h 0(x x ) , k, and K, 

(MSP,k,h) h
ˆ (x ) can be made arbitrarily small either by increasing k or by 

increasing h, or both. Increasing h involves only passing through an 

already programmed loop more times, which requires no extra 

derivations or programming. Therefore, MSP is "inexpensively 

dependent" on h 0(x x )  and is a "global approximation" accurate of 

order 
k

h

. 
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