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Abstract

The present paper shows that product-specific regional price dispersion usually causes
the country-product-dummy (CPD) method to be biased. In cases where it is not, this
multilateral method is still inefficient and inference is invalid. Therefore, a nonlinear
generalization of the CPD method is developed. This NLCPD method is admissible
on all levels of aggregation and allows for a comprehensive spatial price comparison
in a single coherent step. Its root mean squared error is smaller than that of the CPD
method and, in contrast to the latter, it allows for inference. The relative performance
of the CPD and NLCPD methods is compared in a comprehensive simulation study.
Afterwards, the NLCPD method is applied to regional price information derived from
Germany’s consumer price index micro data relating to May 2019.
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1 Introduction

Important areas of economic theory and economic policy are concerned with regional indi-
cators of economic activity. Well known examples are regional real wages and output levels.
However, the high demand for such indicators is not matched by the available supply. The
reasons for this gap are not hard to find. The production of regional real indicators requires
reliable information on the regional price levels, while the primary task of national statis-
tical offices is the tracking of intertemporal price level changes. The latter requires a very
broad sample of different products. Thus, for a basic heading like pasta, say, in different
regions prices of different types of pasta are recorded. By contrast, spatial price compar-
isons would benefit from a more selective sample where the same type of pasta is recorded
in all regions. However, it is laborious and costly to establish and maintain a sample that
serves the needs of both, intertemporal and spatial price comparisons. Therefore, only very
few countries publish regional price levels (Weinand and Auer, 2020, pp. 416-418).

Matters are made worse by the methodological challenges of spatial price comparisons.
While intertemporal price comparisons usually apply bilateral index theory, spatial price
comparisons require a multilateral approach. A wide spectrum of multilateral methods is
on offer and has been applied in case studies of countries from all over the world (e.g.,
Majumder and Ray, 2020, pp. 111-113; Weinand and Auer, 2020, pp. 416-419). The choice
between the various methods also depends on the available data set. Some studies cover
only parts of the country. Others cover the complete country, but the regions are very
large. Another distinguishing feature is the number and range of products for which prices
are available. For example, housing costs are not always included. Usually, the data have
been collected for other purposes. Micro price data are rarely available.

Unfortunately, large data gaps are the rule rather than the exception. Summers (1973)
proposes for such cases the country-product-dummy (CPD) method. This regression ap-
proach also allows for statistical inference. However, the CPD method implicitly assumes
that the included products exhibit the same regional price dispersion. Products that are
assigned to the same basic heading (e.g., pasta products) are expected to satisfy this im-
plicit assumption. Whether this optimism is justified is an empirical question. The higher
the level of aggregation and the more heterogeneous the included products (e.g., pasta ver-
sus shoes), the less plausible becomes the CPD method’s assumption of a uniform price
dispersion.

Accordingly, the CPD method is primarily used for the computation of the regional price
levels of a given basic heading. The aggregation of the regional price levels of the various
basic headings into the overall regional price levels is usually conducted by an alternative
method. Therefore, the final result involves a mix of different methods.

The previous considerations raise several fundamental questions. What are the statis-
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tical consequences when the CPD method is applied, even though the price dispersion is
product-specific? Do the estimated regional price levels remain unbiased? Is inference still
valid? If not, is there a practical way to check whether a set of products exhibits the same
price dispersion? Are there alternative estimation methods that remain unbiased even when
price dispersion is product-specific?

The present paper answers all of these questions. When there is product-specific price
dispersion, the CPD method’s statistical inference is invalid. Even worse, the estimates
of the regional price levels are biased, unless the set of price data is complete (a situation
where the CPD method is rarely used) or the data gaps occur completely at random (a
situation that is difficult to achieve in real world price data samples). As a solution to these
problems, the present paper introduces the NLCPD method, a non-linear generalization of
the CPD method. Both of these multilateral index number methods compute the regional
price levels and the general values of the individual products. However, only the NLCPD
method also provides estimates of the price dispersion of the various products. These
estimates indicate whether the assumption of a uniform price dispersion would be justified.
Even more important, the paper shows that the regional price levels estimated by the
NLCPD method remain unbiased even when the price data exhibit heterogeneous price
dispersion and systematic data gaps exist. In addition, the variance of the estimators
can be estimated, providing a basis for valid statistical inference. Even if the data set
were complete or the data gaps were completely at random, the NLCPD method would
still outperform the CPD method. Thus, the CPD method should be avoided, unless all
products included have exactly the same price dispersion.

The rest of the paper is organized as follows. Section 2 provides an intuitive explanation
for the source of the CPD method’s bias. How the NLCPD method addresses this problem
is explained in Section 3. A more formal treatment of the NLCPD method is presented in
Section 4. Section 5 provides a comprehensive simulation that confirms and complements
the theoretical predictions and makes a strong case for the use of the NLCPD method.
Section 6 applies this method to a large dataset of regional prices. Section 7 concludes.

2 Problem

In subnational price comparisons, the prices of manufactured goods are found to be rather
uniform across the regions, while the cost of housing varies considerably (e.g., Weinand and
Auer, 2020, pp. 430-431 for Germany; Aten, 2017, pp. 130-131 for the United States). The
prices of services take an intermediate position. Tab. 1 shows the same features. It lists the
prices of three products (i = goods, services, housing) in four different regions (r = A, B,
C, D). For simplicity, it is assumed that within each region the expenditure share of each
product is 1/3.
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A B C D
goods 3.0 3.0 3.0 3.0
housing 3.5 5.5 6.5 10.5
services 7.0 8.5 11.5 14.5

Table 1: Prices of Goods, Services, and Housing in Four Regions.

The general price levels of the four regions can be calculated by some multilateral
measurement approach. A well established approach is the CPD method introduced by
Summers (1973). He emphasizes that his regression approach allows for statistical inference
which differentiates it from many other approaches to index number theory. However, this
regression approach also has a significanctly underrated drawback. The CPD regression
implicitly assumes that the products included have the same price dispersion. The prices
in Tab. 1 violate this assumption. Unfortunately, a violation makes the CPD regression
inefficient and inference becomes invalid (as formally shown in Appendix A.3). Even worse,
the CPD regression produces biased estimates of the regional price levels (as formally shown
in Appendix A.2), barring two cases that are rarely satisfied in real world measurement
problems.

The inefficiency of the CPD method is quite obvious. Let pr
i denote the price of product

i in region r. The CPD regression assumes that each price can be explained by the linear
relationship

lnpr
i = lnP r +lnπi +ur

i , (1)

where P r is the price level of region r, πi is the general value of product i, and ur
i ∼ N

(
0,σ2

)
is an error term (see Summers, 1973). To estimate the values of lnP r and lnπi, the CPD
model (1) is transformed into a regression equation with a set of dummy variables that
represent the regions and the products. In the example related to Tab. 1, the CPD regression
yields estimates of the logarithmic price levels, l̂nP r, of the four regions. Taking anti-logs
gives the following regional price levels:

P̂ A = 0.74 , P̂ B = 0.92 , P̂ C = 1.08 , P̂ D = 1.36 . (2)

The price levels are normalized such that P̂ A · P̂ B · P̂ C · P̂ D = 1.

A graphical illustration of the CPD regression is provided in the upper left panel of
Fig. 1. It shows on the vertical axis the observed values of the dependent variable, lnpr

i ,
and on the horizontal axis the unknown regional logarithmic price levels, lnP r. The black
diagonal indicates all points with lnP r = lnpr

i . For each region r, three price observations
exist. In the diagram, these three observations are depicted by a circle (goods), a square
(services), and a triangle (housing). The three observations are positioned along a dashed
vertical line. The position of that line is determined by the CPD regression. More specif-
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Figure 1: CPD and NLCPD regressions for the price data of Tab. 1, either with complete
price data (top panels) or with missing prices for “goods” (bottom panels).

ically, the intersection of each line with the horizontal axis is the estimated value l̂nP r.
Thus, the four intersection points indicated in the upper left panel of Fig. 1 are the loga-
rithms of the price levels listed in (2). To each product i, a solid straight line is depicted
that runs parallel to the diagonal. The intersection of this solid line with the vertical axis
is the estimated value of lnπi.

Changing the estimated value of lnπi causes a parallel vertical shift of the solid line
relating to product i. Changing the estimated value of lnP r causes a horizontal shift of
the dashed vertical line of region r and, therefore, of the three observations relating to
that region. Both types of shifts would alter the vertical distance between the observations
and their respective solid line. This vertical distance is the residual, ûr

i . Graphically
speaking, the CPD regression simultaneously shifts the solid lines and the dashed vertical
lines (together with their three observations) such that the sum of the (squared) vertical
distances between the observations and their respective solid lines is minimized. The upper
left panel of Fig. 1 depicts the solution of this minimization problem.

The CPD regression assumes that the errors, ur
i , are independently distributed. How-

ever, the upper left panel of Fig. 1 reveals that the product-specific price dispersion causes
the residuals to be both, autocorrelated and heteroskedastic. The autocorrelation arises
from the systematic relationship between the residuals and the general price levels of the
regions. For example, there is a very strong negative correlation between the residuals ûr

1

4



(goods) and the estimated values of the general price levels, lnP r. This correlation is caused
by the uniform prices of goods. Similarly, there is a strong positive correlation between the
residuals ûr

3 (housing) and the estimated values of lnP r because the differences in housing
costs are more pronounced than the differences in the general price levels. Only the price
dispersion of services is similar to that of the general price levels. As a consequence, the
CPD regression’s residuals related to services vary less than those related to goods and
housing. Thus, heteroskedasticity arises.

Autocorrelation and heteroskedasticity imply that the CPD regression is inefficient and
that the estimation of the disturbances’ standard deviation is biased. Therefore, inference is
invalid. These conclusions are formally proven in Appendix A.3. Even worse, Appendix A.2
shows that the CPD regression is biased. The only exceptions are scenarios with complete
price data or scenarios where the data gaps arise completely at random.

The cause of the bias is illustrated in the left panels of Fig. 1. The two outer vertical
dashed lines in the upper left diagram indicate the estimated logarithmic price levels of
regions A and D, respectively. Clearly, region A is the cheapest region, while region D is
the most expensive one. Now suppose that the product “goods” is observed in regions B and
C, but not in regions A and D. Thus, the red circles corresponding to the latter two regions
must be deleted. As a consequence, in region A a large negative disturbance vanishes. To
reduce the sum of squared residuals of region A’s remaining two price observations, the
vertical dashed line of region A moves to the left. This effect is depicted in the lower left
panel of Fig. 1. More generally, when a product with a low price dispersion is missing in
the cheapest region, the estimated price level of that region always decreases below the
level with complete data, that is, downward bias arises. Similarly, the missing observation
in region D causes the dashed vertical line of that region to move to the right, that is, the
estimated price level of region D is upward biased. Again, this can be seen in the lower left
panel of Fig. 1. The corresponding price level estimates are

P̂ A = 0.64 , P̂ B = 0.92 , P̂ C = 1.07 , P̂ D = 1.59 .

Compared to the situation with complete price data, the price level of region A falls by
14% while the price level of region D increases by 17%. The price levels of regions B and
C barely change. If the price observations missing in regions A and D were related to
“housing” (the product with the largest price dispersion) instead of “goods” (the product
with the lowest price dispersion), the opposite direction of bias would arise.

All of these problems can be addressed by a simple generalization of the CPD model (1).
The following section explains the basic concept, while the formal exposition is deferred to
Section 4 and Appendix A.1.
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3 Solution

To begin with, we consider the case of complete data with product-specific price dispersion.
Then, the CPD regression is unbiased, but inefficient and inference is invalid. The three
solid lines in the upper left panel of Fig. 1 have a slope of 1, that is, they are parallel to
the diagonal. The residuals could be markedly reduced, if each solid line had its individual
slope. This is accomplished when, instead of CPD model (1), the following relationship is
estimated:

lnpr
i = δi lnP r +lnπi +ur

i . (3)

We denote this relationship as the nonlinear country-product-dummy (NLCPD) regression.
The unknown values of the parameters δi determine the slopes of the solid lines.

In a CPD regression, all slope parameters, δi, are assumed to be equal to 1. The value
δi = 1 says that, in the absence of any disturbances (ur

i = 0 for all i and r), each price ratio
pr

i /ps
i (i = 1,2,3 and r,s = A,B,C,D) coincides with the ratio of the regional price levels

P r/P s. In other words, all products exhibit the same regional price dispersion.

Economic models (e.g., Tabuchi, 2001, p. 105) as well as empirical evidence (e.g.,
Weinand and Auer, 2020, p. 430; Rokicki and Hewings, 2019, p. 94; Aten, 2017, p. 132-134)
show that in the context of heterogeneous products the slope parameters, δi, should be
allowed to deviate from 1. Products with δi > 1 exhibit a stronger regional dispersion than
the average of all products (“overdispersion”), while products with δi < 1 exhibit a smaller
dispersion (“underdispersion”). Products with prices that are invariant with respect to the
regional price levels have a slope parameter, δi, close to 0. In our illustrative example, this
case of underdispersion applies to the product “goods”. The product “housing” seems to ex-
hibit a strong overdispersion (δ3 > 1), while for the product “services” the slope parameter
appears to be in the neighbourhood of 1 (δ2 ≈ 1).

On average, the price ratios pr
i /ps

i must reflect the ratios of the regional price levels
P r/P s. In Section 4 it is shown that this intuitive condition leads to the following restric-
tion: ∑3

i=1 δi/3 = 1. Since the CPD model (1) implicitly assumes that all δi-values are
equal to 1, that model automatically satisfies this restriction. For the NLCPD model (3) it
is a restriction that must be appropriately implemented in the estimation procedure. The
estimation of the NLCPD model (3) uses exactly the same set of dummy variables as the
estimation of the CPD model (1); further details are provided in Section 4.

For the price data listed in Tab. 1, the fitting of the NLCPD regression lines to the data
is depicted in the upper right panel of Fig. 1. The estimates of the slopes of the regression
lines are δ̂1 = 0, δ̂2 = 1.76, and δ̂3 = 1.24. The estimated price levels are

P̂ A = 0.74 , P̂ B = 0.93 , P̂ C = 1.07 , P̂ D = 1.36 .
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They are very similar to those obtained from the CPD regression when no prices are missing.

The lower right panel of Fig. 1 depicts the case where in regions A and D the prices of
“goods” are missing. In contrast to the CPD regression, these data gaps cause hardly any
change in the estimated price levels P̂ A to P̂ D. In other words, incomplete data no longer
lead to estimation bias.

Another major advantage of the NLCPD regression is a better model fit. In the case of
complete data (upper panels of Fig. 1), the sum of squared residuals divided by the degrees
of freedom falls from 0.056 (CPD regression) to 0.003 (NLCPD regression). Furthermore,
in contrast to the CPD regression, the NLCPD method provides meaningful estimates of
the standard errors of all estimated parameters, including regional price levels (formally
shown in Appendix A.4). Thus, inference can be conducted.

4 Method

Multilateral price comparisons involve more than two regions. Therefore, any direct com-
parison between two regions should give the same price levels as an indirect comparison
of these two regions via a third region. In index number theory, this requirement is called
transitivity (e.g., Rao and Banerjee, 1986, p. 304). Both, the CPD and the NLCPD method
produce transitive price levels.

The NLCPD model (3) is a generalization of the linear CPD model (1). The model
function is nonlinear in its parameters. Consequently, parameter estimates must be derived
by nonlinear regression. In Section 4.1, it is shown how the NLCPD model can be put into
a proper regression model. In Section 4.2, the first-order conditions of this regression model
as well as general formulas of the estimators are derived. The latter are compared to the
formulas known for the CPD method. Since nonlinear regressions involve iterative search
procedures, parameter start values are typically required. In Section 4.3, three strategies
for the derivation of such start values are presented. Section 4.4 provides the formulas of
the estimators’ standard errors.

4.1 Regression model

Let R = {r : r = 1,2, . . . ,R} denote the set of regions and N = {i : i = 1,2, . . . ,N} the set of
products included in the price comparison. To transform the CPD and NLCPD models in
(1) and (3) into proper regression models, two sets of dummy variables are required. For
each region s ∈ R a dummy variable Ds is defined such that Ds = 1 when r = s, and Ds = 0
otherwise. Similarly, for each product j ∈ N a dummy variable Gj is defined such that
Gj = 1 when i = j, and Gj = 0 otherwise. With these dummy variables, the CPD model (1)
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can be written in the form

lnpr
i =

∑
j∈N

Gj lnπj +
∑
s∈R

Ds lnP s +ur
i (4)

and the NLCPD model (3) in the form

lnpr
i =

∑
j∈N

Gj lnπj +
∑
j∈N

Gjδj

∑
s∈R

Ds lnP s +ur
i . (5)

Summers (1973) assumes that the standard deviation of the error term is constant across
products: ur

i ∼ N (µ = 0, σi = σ). Thus, in the CPD regression’s minimization of squared
residuals all observations are equally weighted. When expenditure shares or other indicators
of the products’ importance are available, it is recommended to use weighted least squares
(e.g., Clements and Izan, 1981, pp. 745-746; Selvanathan and Rao, 1992, pp. 338-339;
Diewert, 2005, pp. 562-563; Rao, 2005, pp. 574-575; Hajargasht and Rao, 2010, p. S39).
This recommendation is usually implemented by the following assumption on the error: ur

i ∼
N
(
µ = 0, σi = σ/

√
wi

)
, where wi are expenditure shares which add up to unity (∑i∈N wi =

1) and are uniform across regions. In the following, we apply weighted least squares.

In the CPD model (4) as well as in the NLCPD model (5) perfect multicollinearity
would arise. To avoid this problem, one of the πj-values or lnP s-values can be set equal to
0. Alternatively, the normalization

∑
s∈R

lnP s = 0 (6)

can be applied and one of the lnP s-parameters is derived as a residual from (6), instead of
being estimated. Any of the lnP s-parameters can be used for this purpose. If region s = 1
is chosen, the CPD model (4) becomes

lnpr
i =

∑
j∈N

Gj lnπj +
∑

s∈R\{1}̃
Ds lnP s +ur

i , (7)

where D̃s =
(
Ds −D1

)
and the parameter lnP 1 is residually calculated by the expression

lnP 1 = −∑s∈R\{1} lnP s.

The NLCPD regression requires an additional condition. Since δj lnP s = (δjλ) lnP s/λ,
the estimation of the parameters in model (5) requires a restriction on the δi-values. Oth-
erwise, the dispersion of the regional price levels, lnP s, could be arbitrarily scaled up or
down by the parameter λ.

The appropriate restriction can be easily derived from considering some pair of regions
denoted by r and s. Both, the CPD method and the NLCPD method postulate that, in
the absence of any disturbances, the logarithm of the price ratio ps

i /pr
i of a given product i
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should be proportional to the logarithm of the ratio of the regional price levels of these two
regions, P r/P s, that is,

ln pr
i

ps
i

= ln
(

P r

P s

)
δi . (8)

This relationship should hold for all pairs of regions. The CPD method adds the assumption
that δi is unity for all products i ∈ N . In the NLCPD method no such restriction is
imposed. Multiplying both sides of Eq. (8) by the expenditure weight wi and summing
over all products gives ∑

i∈N
wi ln pr

i

ps
i

= ln
(

P r

P s

)∑
i∈N

wiδi . (9)

Since the expenditure weights are assumed to be uniform across regions, the left-hand side
of Eq. (9) is identical to the log-change index formulas of Törnqvist, Walsh-Vartia, and
Sato-Vartia (e.g., Auer and Shumskikh, 2022, p. 6). To ensure that the NLCPD regression
is consistent with these index formulas, the right-hand side of Eq. (9) must simplify to
ln(P r/P s). Thus, the appropriate restriction on the δi-values is

∑
i∈N

wiδi = 1 . (10)

Note that the CPD model (4) satisfies this restriction by assumption (δi = 1 for all i ∈ N ).
By contrast, the NLCPD model (5) provides estimates for δi which have to satisfy restriction
(10).

A very intuitive justification for restriction (10) arises when the term δi lnP r is inter-
preted as region r’s product-specific logarithmic price level (not to be confused with the
observed logarithmic price lnpr

i ). Consequently, the weighted average of region r’s product-
specific logarithmic price levels should yield region r’s overall price level:

∑
i∈N

wiδi lnP r = lnP r .

To make this postulate a valid identity, restriction (10) is required.

This restriction implies that one of the δi-values must not be estimated but is to be
derived as a residual. As in the CPD model (4), also one of the lnP r-values must be
residually derived. Again, any product i and any region r can be chosen for this purpose.
If product i = 1 and region r = 1 are selected, the NLCPD regression model (5) becomes

lnpr
i =

∑
j∈N

Gj lnπj +
G1

w1
+
∑

j∈N \{1}̃
Gjδj

 ∑
s∈R\{1}

D̃s lnP s +ur
i , (11)

where D̃s =
(
Ds −D1

)
and G̃j = (Gj − (wj/w1)G1). The parameters δ1 and lnP 1 are

defined by δ1 =
(
1−∑

j∈N \{1} wjδj

)
/w1 and lnP 1 = −∑s∈R\{1} lnP s, respectively. Note
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that the only difference between the NLCPD regression model (11) and the CPD regression
model (7) is the factor in brackets. For observations of product i = 1, this factor simplifies
to the above definition of δ1, and for all other observations, the factor simplifies to the
parameter δi.

4.2 Estimator

In the following, we derive the NLCPD method’s weighted least squares estimators ̂lnπi,
δ̂i and l̂nP r, and the CPD method’s estimators, ̂lnπ′

i and l̂nP r′, as special cases. The
residuals ûr

i of the NLCPD regression model (3) are defined by ûr
i = lnpr

i − δ̂i l̂nP r − l̂nπi.
Accordingly, the weighted sum of squared residuals, Sûr

i ûr
i
, can be written as

Sûr
i ûr

i
=
∑
r∈R

∑
i∈Nr

wi

(
lnpr

i − δ̂i l̂nP r − l̂nπi

)2
=
∑
i∈N

∑
r∈Ri

wi

(
lnpr

i − δ̂i l̂nP r − l̂nπi

)2
,

where Nr defines the set of products for which a price is available in region r. Analogously,
Ri defines the set of regions where product i is priced. The set’s number of products is
denoted by Ri.

The formulas of l̂nπi, δ̂i and l̂nP r can be derived by minimizing Sûr
i ûr

i
. In this non-

linear least squares approach we apply normalization (6) as well as restriction (10). As a
consequence, one δ̂i-value as well as one l̂nP r-value cannot be used in the minimization,
but is residually derived. The first-order conditions are

∂Sûr
i ûr

i

∂ l̂nπi

=
∑

r∈Ri

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)
(−1) = 0 (12a)

∂Sûr
i ûr

i

∂δ̂i

=
∑

r∈Ri

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−l̂nP r

)
= 0 (12b)

∂Sûr
i ûr

i

∂ l̂nP r
=
∑

i∈Nr

wi2
(
lnpr

i − δ̂i l̂nP r − l̂nπi

)(
−δ̂i

)
= 0 . (12c)

Condition (12a) gives

l̂nπi = 1
Ri

∑
r∈Ri

(
lnpr

i − δ̂i l̂nP r
)

. (13)

As the product weights are identical across regions, each region receives the same weight
in the summation. Inserting the restriction δ̂i = 1 (i ∈ N ) in the NLCPD estimator (13),
gives the corresponding CPD estimator:

̂lnπ′
i = 1

Ri

∑
r∈Ri

(
lnpr

i − l̂nP r′
)

, (14)
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where l̂nP r′ is the CPD estimator of the regional price levels as defined in Eq. (17), below.

For a product i that is priced in all regions (Ri = R), the estimator (13) simplifies to

l̂nπi = 1
R

∑
r∈R

lnpr
i − δ̂i

1
R

=0︷ ︸︸ ︷∑
r∈R

l̂nP r = 1
R

∑
r∈R

lnpr
i

which is also the CPD estimator for such a product (e.g., Diewert, 2004, p. 7).

Condition (12b) yields

δ̂i =

∑
r∈Ri

l̂nP r
(
lnpr

i − ̂lnπi

)
∑

r∈Ri

(
l̂nP r

)2 . (15)

The numerator is the covariation (across regions) of the logarithmic regional price level,
l̂nP r, and

(
lnpr

i − ̂lnπi

)
. The denominator is the variation (across regions) of the loga-

rithmic regional price levels. Therefore, the estimator (15) can be viewed as the ordinary
least square estimator of the slope parameter of a simple linear model where

(
lnpr

i − ̂lnπi

)
is regressed on l̂nP r. The covariation represented by the numerator is usually positive.
The larger this covariation, the larger the estimated price dispersion, δ̂i. If product i has
a uniform price in all R regions, then ̂lnπi = lnpr

i and, therefore, the estimator (15) gives
δ̂i = 0. However, if this product has been observed only in Ri < R regions, ̂lnπi and lnpr

i

can differ and δ̂i ̸= 0 can arise.

It can be shown that, for complete price data, formula (15) can be written in the form

δ̂i =

∑
r∈R

l̂nP r lnpr
i∑

r∈R
l̂nP r · ∑

j∈N
wj lnpr

j

.

If the numerator is larger than the denominator, the prices of product i exhibit a stronger
positive correlation with the regional price levels than the weighted average of the prices of
all products. Therefore, we get δ̂i > 1.

Condition (12c) can be rewritten as

l̂nP r =

∑
i∈Nr

wiδ̂i

(
lnpr

i − ̂lnπi

)
∑

i∈Nr

wi

(
δ̂i

)2 . (16)

The numerator is the covariation (across products) of
(
lnpr

i − ̂lnπi

)
and the spread parame-

ter δ̂i. The denominator is the variation (across products) of δ̂i. The same formula would be
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applied in a weighted least squares regression where the dependent variable
(
lnpr

i − ̂lnπi

)
is a linear function of the independent variable δ̂i. A negative value, l̂nP r, indicates a
relatively cheap region. It arises when the numerator is negative, that is, when in region r

prices, lnpr
i , below the general value, ̂lnπi, dominate in the sense that they are either more

frequent and/or more often arise for products with a large price dispersion, δ̂i. In expensive
regions

(
l̂nP r > 0

)
, prices above the general level dominate.

Setting δ̂i = 1 for all products i ∈ Nr, the estimator (16) simplifies to the corresponding
CPD estimator:

l̂nP r′ =

∑
i∈Nr

wi

(
lnpr

i − ̂lnπ′
i

)
∑

i∈Nr

wi
. (17)

When all products i are priced in region r, we get ∑i∈Nr
wi = 1 and the resulting estimator

(17) simplifies to the well known CPD formula (e.g., Rao, 2005, p. 577; Rao and Hajargasht,
2016, p. 417):

l̂nP r′ =
∑

i∈Nr

wi

(
lnpr

i − ̂lnπ′
i

)
.

The nonlinear least squares formulas (13), (15) and (16) do not provide explicit solu-
tions for the parameters ̂lnπi, l̂nP r, and δ̂i. Instead an iterative optimization routine is
necessary.1 Such routines require appropriate start values for the model parameters.

4.3 Parameter start values

The choice of appropriate start values is important for two reasons. First, it is more likely
that the optimization algorithm successfully converges in the allowed number of iterations.
Second, singularities can prevent any optimization if initial parameter start values are not
set adequately. Strategies for deriving start values are usually data- and model-driven (e.g.
Gallant, 1975, p. 76). In the following, we provide three simple strategies for the derivation
of parameter start values in the NLCPD regression.

In strategy S1, parameter start values are derived from the calculation of simple price
averages across products and regions. Defining the weighted logarithmic average price in
region r as ln p̄r =∑

i∈Nr
wi lnpr

i , the start values lnP r and lnπi can be computed from

lnP r = ln p̄r − 1
Ri

∑
s∈Ri

ln p̄s and lnπi = 1
Ri

∑
r∈Ri

lnpr
i .

The start values for δi are set equal to one for all i ∈ N . This assumption satisfies restriction

1 Common methods are Gauss-Newton, Levenberg-Marquardt, (L-)BFGS, Nelder-Mead, and gradient
descent. A comprehensive overview can be found in Kelley (1999). Our R-implementation of the
NLCPD method relies on a modification of the Levenberg-Marquardt algorithm (see Elzhov et al.,
2016; Moré, 1978).
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(10) and is also the assumption underlying the CPD regression model. The calculations are
easy to implement and computationally efficient.

In the event of incomplete price data, however, start values for lnP r and lnπi derived
by strategy S1 might be a poor guess. Using the CPD method’s estimates of lnP r and lnπi,
is a more appealing approach, irrespective of any data gaps. This is strategy S2. Again,
the start values for δi are set equal to one. When the price data are complete, this strategy
provides the same set of start values as strategy S1.

If it is known that some δi-values deviate from one (e.g., for products with uniform
prices across regions), setting δi = 1 is inappropriate. Therefore, strategy S3 is identical to
strategy S2, but computes the start values of δi from Eq. (15) where the CPD estimates of
lnP r and lnπi provide the values of l̂nP r and ̂lnπi, respectively. The resulting δ̂i-values do
not necessarily satisfy restriction (10). Therefore, to obtain the proper start values, they
are divided by ∑i∈N wiδ̂i.

When the price data are complete, the choice between the three strategies hardly mat-
ters. Strategy S3 takes exactly one iteration less than the other two strategies because
start values for δ̂i are directly derived from the first-order condition. With incomplete price
data, the start values of the three strategies differ. Our simulations indicate that strat-
egy S3 outperforms strategies S2 and S1. The number of iterations until convergence is
slightly smaller, the percentage of successful completions is marginally higher, and the sum
of squared residuals achieved at convergence is slightly lower.

4.4 Standard errors

In nonlinear regression models, approximations of the standard errors can be computed
from the Jacobian matrix evaluated at final parameter estimates. This computation is
documented in Appendix A.4. When the data set is complete, the approximated standard
error of the NLCPD estimator l̂nπi is

ŝe
(
l̂nπi

)
= σ̂

√
1

Rwi
, (18)

with

σ̂ =

√√√√ Sûr
j ûr

j

NR −R −2N +2 .

To obtain the corresponding estimator of the CPD method, ŝe′
( ̂lnπ′

i

)
, the estimator σ̂

must be replaced by the estimator σ̂′ =
√

Sûr′
j ûr′

j
/(NR −R −N +1), with ûr′

j denoting the
residuals of the CPD regression. In Appendix A.3 it is shown that the estimator σ̂′ and,
therefore, the estimator ŝe′

( ̂lnπ′
j

)
are biased.
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The approximated standard error of the estimator of δi is

ŝe
(
δ̂i

)
= σ̂

√√√√√√ 1∑
r∈R

(
l̂nP r

)2

(1−wi

wi
+
(
δ̂i −1

)2)
. (19)

This standard error falls as the product weight, wi, increases, the fluctuation of the esti-
mated logarithmic price levels, l̂nP r, increases, and the δ̂i-value moves away from one.

For the NLCPD estimator of the regional price levels, l̂nP r, the following standard error
is derived:

ŝe
(
l̂nP r

)
= σ̂

√√√√√√√√ 1∑
i∈N

wi

(
δ̂i

)2

R −1
R

+
∑

i∈N
wi

(
δ̂i

)2
−1


(
l̂nP r

)2

∑
s∈R

(
l̂nP s

)2

 . (20)

From restriction (10) and Jensen’s (1906) inequality we know that

∑
i∈N

wi

(
δ̂i

)2
≥

∑
i∈N

wiδ̂i

2

= 12 = 1 .

Thus, the root term in Eq. (20) is always positive. In addition, one can show that it is
smaller or equal to

√
(R −1)/R. The root term increases with the number of regions, R,

and the estimated logarithmic price level, l̂nP r. If for all products i ∈ N the estimated
price dispersion were δ̂i = 1, the formula would simplify to ŝe

(
l̂nP r

)
= σ̂

√
(R −1)/R. Note

that the CPD formula, ŝe′
(
l̂nP r′

)
= σ̂′

√
(R −1)/R, is biased because σ̂′ is biased.

5 Simulation

Imposing the restriction δi = 1 for all products i in the NLCPD model (3) yields the CPD
model (1). However, the restriction is quite unrealistic as regional price level dispersions
can be expected to vary across basic headings and sometimes even within basic headings.
Hence, the NLCPD method should theoretically provide more accurate price level estimates
than the CPD method. To examine this hypothesis in a statistical context, we perform a
Monte Carlo simulation. The simulation setting is described in Section 5.1 while the results
are provided in Section 5.2.
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5.1 Setting

In the simulation, we consider N = 15 products or basic headings available in R = 20 regions.
The data generating process (DGP) in Eq. (3) assumes that each region r has a true but
unknown price level lnP r. Similarly, for each product i true values of the parameters lnπi

and δi exists.

The true regional price levels, lnP r, are generated in two steps. First, preliminary price
levels, ln P̃ r, are independently sampled from a normal distribution with mean µ = 0 and
standard deviation σ = 0.1, that is, ln P̃ r ∼ N (µ = 0, σ = 0.1). Second, the price levels are
normalized. Subtracting from ln P̃ r the average preliminary price level of all regions yields
the true regional price levels, lnP r:

lnP r = ln P̃ r − +
1 R

∑
s∈R

ln P̃ s .

By definition, their mean is zero. The resulting average price level spread between the most
expensive region and the cheapest region is almost 50%.

For each product i, preliminary weights, w̃i, are sampled from a uniform distribution
with w̃i ∼ U (min = 1, max = 100). The normalized weights are wi = w̃i/

∑
j∈N w̃j . The

weights do not vary across regions. In the present context, they represent expenditure
shares.

The products’ general values, lnπi, are drawn from a log-normal distribution with lnπi ∼
LN (µ = 0, σ = 0.5). The log-normal distribution ensures product prices to be greater zero
while its positive skewness makes very expensive products occur less frequently.

The regional price dispersion of the products, δi, is expected to vary but should be 1
on average. The preliminary values of δ̃i are sampled from a normal distribution with δ̃i ∼
N
(
µ = 1, σ =

√
0.5
)
. The normalized values are δi = δ̃i/(∑j∈N wj δ̃j). Thus, ∑i∈N wiδi = 1.

The error term ur
i is sampled from a normal distribution with a product-specific stan-

dard deviation: ur
i ∼ N

(
µ = 0, σi = σ/

√
wi

)
with σ = 1/100 being the “global” standard

deviation of the error term. This setting ensures that weighted variants (or weighted least
squares) of the CPD and NLCPD methods are the appropriate choice of estimation.

In our simulation, we differentiate between three scenarios. The first two scenarios serve
rather as a reference while the third scenario probably is the most realistic one.

Scenario 1: In the first scenario, we assume that the price data are complete, that is,
there is exactly one price per product and region. This gives NR = 300
observations and the share of missing prices is equal to 0.

Scenario 2: In the second scenario, we assume that every third price is missing. This
gives a total of 200 observations. The missing prices are chosen completely
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at random. All other parameters are the same as in the first scenario.

Scenario 3: In the third scenario, we keep the setting of the second scenario but intro-
duce the missing prices in a systematic manner: the larger δi, the smaller
the probability that prices for product i are missing.

For each scenario, we perform the following steps. First, we generate the artificial price
data by inserting the sampled values of lnP r, lnπi, δi, wi, and ur

i into the DGP defined in
Eq. (3). Second, we order the regions according to their true price levels lnP r and then label
the regions by their rank. In other words, region r = 1 always denotes the cheapest region
and region r = 20 the most expensive one. Similarly, we arrange the products according to
their δi-parameter. Thus, product i = 1 always exhibits the lowest regional price dispersion.
Third, we apply both the (weighted) CPD method and the (weighted) NLCPD method to
the price data generated during the first step. For the starting values of the NLCPD method
we apply strategy S3. That is, we use the CPD method’s estimates for lnP r and lnπi as
starting values. These values are also used to calculate the starting values of all δi by
formula (15).

We repeat these three steps L = 2000 times (with iterations l = 1,2, . . . ,L) and obtain
for each region r a set of 2000 l̂nP r′-values for the CPD method and 2000 l̂nP r-values for
the NLCPD method. Afterwards, we compare the performance of the two methods. To this
end, we compute from the NLCPD results of the L iterations for each region r the absolute
value of the bias, |Bias

(
l̂nP r

)
|, and also the root mean squared error, RMSE

(
l̂nP r

)
. Then,

we take the average of these numbers across all regions:

Bias
(̂lnP

)
= 1

R

∑
r∈R

∣∣∣Bias
(
l̂nP r

)∣∣∣= 1
R

∑
r∈R

∣∣∣∣∣∣ 1L
L∑

l=1

(
l̂nP r

l − lnP r
l

)∣∣∣∣∣∣ (21a)

RMSE
(̂lnP

)
= 1

R

∑
r∈R

RMSE
(
l̂nP r

)
= 1

R

∑
r∈R

√√√√√ 1
L

L∑
l=1

(
l̂nP r

l − lnP r
l

)2
, (21b)

where l̂nP r
l denotes the estimated parameter of region r’s price level obtained in itera-

tion l by the NLCPD method, while lnP r
l is the corresponding true parameter. For the

CPD method, Bias
( ̂lnP ′

)
and RMSE

( ̂lnP ′
)

are derived in the same way.

For the simulation Scenarios 1 and 2, we expect both methods to produce unbiased
estimates for lnP r. However, when data gaps are introduced in a systematic manner, as in
Scenario 3, lnP r-estimates of the CPD method are expected to be biased. Although the
degrees of freedom in the NLCPD are lower than in the CPD method, we expect that the
NLCPD model’s higher flexibility results in a higher accuracy. Consequently, the RMSE
should be lower for the NLCPD method in all three simulation scenarios.
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5.2 Discussion of results

The simulation results for the mean absolute bias and the mean RMSE of the lnP r-estimates
can be found in Tab. 2.2 Regional price level estimates seem to be unbiased for both the
CPD and NLCPD methods if price data are complete or if gaps occur completely at random
(see Scenarios 1 and 2 in Tab. 2). The mean absolute bias over all regions is all but zero.
However, if data gaps occur systematically, the lnP r-estimates of the CPD method are – in
absolute terms – biased by more than 1% on average, while the NLCPD method’s estimates
are still unbiased (see Scenario 3 in Tab. 2).

Scenario 1 Scenario 2 Scenario 3
CPD NLCPD CPD NLCPD CPD NLCPD

Bias 0.0002 0.0001 0.0003 0.0002 0.0133 0.0002
RMSE 0.0097 0.0081 0.0201 0.0110 0.0250 0.0105

Table 2: Mean absolute bias and mean RMSE of the NLCPD estimates, l̂nP r, and the CPD
estimates, l̂nP r′.

In general, a lower RMSE indicates higher accuracy. Since regional price levels are
measured on the logarithmic scale, even small differences in the RMSE significantly impact
accuracy. In all three simulation scenarios the computed mean RMSE of lnP r-estimates is
lower for the NLCPD method than for the CPD method (see bottom line of Tab. 2). If the
price data are complete, the difference in the mean RMSE is relatively small. With missing
prices, however, this difference noticeably increases.

The NLCPD method’s better performance is not only valid on average, but can be
observed for each region and each scenario. This is shown in Fig. 2. Its structure is similar
to Tab. 2 but depicts the bias and RMSE for each region r on the horizontal axes. The
regions are ordered with respect to their true price level.

The top row of Fig. 2 reveals that in all regions both the CPD and the NLCPD method
are unbiased as long as the data are complete or missing completely on random (Scenarios 1
and 2), but that the CPD method is biased when the data gaps are systematic (see the red
dots in Scenario 3). More specifically, the more a region’s true price level deviates from the
average price level of all regions, the larger the bias. As predicted in Section 3, in the cheap
regions, downward bias arises, while the expensive regions exhibit upward bias. Conse-
quently, the CPD method overestimates the price level spread between the most expensive
region and the cheapest region. Recall that in the simulation Scenario 3 the number of data
gaps is negatively correlated with the product’s true regional price dispersion, δi. Switch-
ing to a positive correlation, one would observe the opposite effects, that is, cheap regions

2 In Appendix B, mean absolute bias and mean RMSE are also reported for the estimates of lnπi and
δi, respectively.
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Figure 2: Bias and RMSE of the NLCPD estimates, l̂nP r, and the CPD estimates, l̂nP r′,
for the three simulation scenarios.

appear too expensive, expensive regions appear too cheap and, therefore, the regional price
level spread is underestimated. The NLCPD method avoids all these problems. Also in
Scenario 3, the blue dots remain close to the horizontal baseline.

The NLCPD method outperforms the CPD method also with respect to the RMSE.
This is shown in the bottom row of Fig. 2. The blue dots are closer to the base line. As
long as the data are complete (Scenario 1), the advantage of the NLCPD method does not
depend on a region’s true price level. However, when data gaps occur (Scenarios 2 and 3),
the accuracy problems of the CPD method become more pronounced. The u-shape of the
red dots implies that the largest inaccuracies arise for the cheapest and the most expensive
regions.

6 Empirical application

In the following, we apply the NLCPD method to regional price levels above the basic
heading level, compiled from German official CPI micro data. This is of particular interest
because the degree of price dispersion can be expected to vary between basic headings
(e.g., rents versus manufactured goods) while the CPD method assumes a uniform degree
of price dispersion. Therefore, we also compare the results of the NLCPD method to those
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we would obtain from the CPD method. The estimated price levels are transformed into a
regional price index for Germany.3

6.1 Price data and aggregation approach

We have the privilege to work with micro price data of the German consumer price index
(CPI) of May 2019. These data were provided to us by the Research Data Center of the
Federal Statistical Office and Statistical Offices of the Länder. In total, the data contain
more than 400,000 price observations for goods, services and rents which were collected in
the 401 regions of Germany (294 counties and 107 cities). Because the prices of few items
are collected in all regions, the micro price data exhibit gaps.

The observations of the German CPI are classified into 12 divisions (see Tab. 3) and
further into 783 basic headings. This classification follows the United Nations’ Classification
of Individual Consumption by Purpose (COICOP).

Due to methodological reasons, 70 basic headings with centrally collected prices cannot
be exploited in a regional analysis.4 They represent a combined expenditure weight of
13.44%. 36 other basic headings with a combined weight of 1.45% were too fragmentary

ID Division #BH Expenditure weight
Usable Unusable

01 Food and non-alcoholic beverages 172 9.69 0.00
02 Alcoholic beverages, tobacco and narcotics 18 3.78 0.00
03 Clothing and footwear 62 4.45 0.08
04 Housing, water, electricity, gas and other fuels 38 29.95 2.52
05 Furnishings, household equipment and maint. 93 4.50 0.50
06 Health 31 3.92 0.69
07 Transport 53 11.29 1.62
08 Communication 1 0.05 2.62
09 Recreation and culture 100 6.58 4.75
10 Education 7 0.90 0.00
11 Restaurants and hotels 36 3.60 1.07
12 Miscellaneous goods and services 66 6.39 1.03

677 85.11 14.89

Table 3: Number of basic headings included in the price level estimation (“#BH”) and their
expenditure weights in the German CPI (in %, base year 2015). Usable and unusable weights
add up to 100%. Source: Research Data Centre of the Federal Statistical Office and Statistical
Offices of the Länder, CPI, May 2019; authors’ own computations.

3 The price index numbers of the German regions are available upon request.
4 For example, prices of package holidays, are collected from a big sample (e.g. Egner, 2019, p. 97).

However, this sample of prices is already aggregated by the Federal Statistical Office into a single
index number when entering the micro data set.
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to convey useful information for the interregional price comparison.5 This leaves us with
677 basic headings the price information of which can be included in the regional price
comparison. As can be seen from Tab. 3, the largest problems are in division “09: Recreation
and culture” where 2.66 percentage points of the 4.75% reported can be attributed solely to
the basic heading of package holidays. By contrast, the divisions 01 to 03 (food, beverages
and clothing) are almost fully covered by the overall price index.

For each of the remaining 677 basic headings we assume that the price dispersion of the
items within a basic heading is identical. Thus, the set of regional price levels of a given
basic heading can be estimated with the CPD method. Since the expenditure weights of
the individual items are not known, a weighted estimation is not feasible. Principally, the
CPD method is applied to each basic heading. However, it is worthwhile to mention some
improvements and modifications that we implement.

There are almost 300 basic headings that also contain prices related to the outlet type
“internet and mail-order business”. These prices are constant across regions. Their com-
bined expenditure weight is 2.96%. Furthermore, the prices of 56 other basic headings
(weight 10.18%) are uniform across Germany (e.g, cigarettes). We combine all prices that
are constant across regions in two separate price level vectors. Together, they account for
13.14% of the total expenditure weight.

In the German CPI, five basic headings represent rents (weight 19.63%). The rent data
are collected by the Federal Statistical Office. The sample includes the qualitative features
of the flats. Therefore, we do not use a CPD regression, but estimate the regional rent
levels by a hedonic regression that takes into account the individual characteristics of each
flat. The details of this procedure are documented in Weinand and Auer (2020, pp. 423-424;
see second aggregation stage). As a result, the five basic headings are aggregated into one
basic heading. However, this basic heading covers mainly existing tenancies. Therefore, we
add another basic heading featuring the rent levels of new contracts. These rent levels were
provided to us by the Federal Office for Building and Regional Planning (BBSR) for the
second quarter of 2019.

The prices of fuels collected by the Federal Statistical Office represent four different basic
headings. We replace them by two basic headings computed from a full sample, which was
collected by the German Market Transparency Unit for Fuels in May 2019.6

In total, our compilation procedures yield 618 price level vectors, one for each basic
heading. They cover 85.11% of the total expenditure weight. The remaining 14.89% of
total expenditure weight are proportionally assigned to these 618 basic headings. This set

5 For example, the priced items of the basic heading “gloves” were not identical and, therefore, not
comparable.

6 The data were downloaded from hiips://creativecommons.tankerkoenig.de/ where historical fuel
prices are provided on a daily basis.
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of weights and price level vectors forms the data base for the NLCPD as well as the CPD
estimation. Both estimations are conducted as described in Section 4. The empirical results
do not only provide us with a reliable regional price index for Germany but also allow us
to verify the theoretical predictions made in the previous sections.

6.2 Discussion of empirical results

The price level estimates of the CPD and NLCPD methods are highly correlated (Pear-
son correlation: 0.97). However, the estimated logarithmic price levels obtained from the
NLCPD method range between −0.09 and 0.22, while those of the CPD method exhibit a
much larger spread ranging from −0.17 to 0.31. This empirical finding is perfectly in line
with the theoretical predictions made in Section 2. There, it was argued that a negative
correlation between a product’s number of data gaps and its price dispersion results in an
upward biased estimate of the spread of the estimated regional price levels. In the present
case, the Spearman correlation of the number of data gaps and the NLCPD’s estimates δ̂i

is −0.13.

The distributions of the estimated logarithmic regional price levels, l̂nP r and l̂nP r′, are
depicted in the left panel of Fig. 3. By definition, the average logarithmic price level of
both methods is zero. The median price level is negative, indicating a positive skewness of
the price level estimates. This effect is more pronounced for the CPD method than for the
NLCPD method.

Also the estimates of lnπi of the two methods are highly correlated (Pearson correlation:
0.96). The right panel of Fig. 3 shows that the lower bound of the range is similar, while the

Figure 3: CPD and NLCPD estimates of the regional price levels, lnP r, and the general
values of the products, lnπi.
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upper bound differs. Except for very few outliers, the NLCPD method’s estimates δ̂i appear
highly plausible. For the two basic headings with constant regional price levels, the NLCPD
method yields an estimated price dispersion of δ̂i = 0. For rents (existing tenancies) and
for new lease rents we get δ̂i = 3.23 and δ̂i = 4.82, respectively. On average, the δ̂i-values
of goods are the smallest ones. The δ̂i-values of rents are among the largest ones, while
most of the δ̂i-values of services take a middle position. The results clearly confirm that
the regional price dispersion varies between the basic headings. Thus, the implicit working
hypothesis of the CPD method is falsified by our results.

In order to transform the estimates of lnP r into a regional price index they are ex-
pressed in relation to their population weighted average. For the NLCPD method the
transformation is

P r = 100 · exp
(
l̂nP r − lnP Ger

)
,

where lnP Ger =∑401
r=1 gr l̂nP r and gr is the population share of region r. The same trans-

formation is applied to the CPD price level estimates.

Summary statistics of the price index numbers are reported in Tab. 4. When the NLCPD
method is applied, the price level of the cheapest region is by 89.2/100 = 10.8% below the
population weighted average. The most expensive region exceeds that average by 21.8%.
The spread between the most expensive and the cheapest region is 121.8/89.2 = 36.5%.
These numbers are more pronounced for the CPD method, resulting in a regional price
spread of 61.9%. As can be seen from Tab. 4, for both methods, the unweighted mean is
below the population weighted mean, indicating that a region’s price level tends to increase
with its population.

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd.
CPD 82.2 92.5 95.9 97.5 101.2 133.1 7.6
NLCPD 89.2 94.3 96.9 98.0 100.4 121.8 5.2

Table 4: Price index numbers in relation to the population weighted mean (= 100).

The spatial pattern of the price index numbers of the 401 German regions is depicted
in Fig. 4. As expected, the price level dispersion estimated by the CPD method is much
larger than that estimated by the NLCPD method. The seven biggest cities in Germany all
exhibit price index numbers above the population weighted average. The NLCPD method
ranks Munich as the most expensive region. It’s price level is 21.8% above the population
weighted average. The numbers for Stuttgart and Frankfurt are 14.7%, Hamburg 12.1%,
Cologne 9.2%, Dusseldorf 7.1%, and Berlin 5.6%. In the CPD method, the same ranking of
the seven cities arises and Starnberg, a region neighbouring Munich, is the most expensive
region in Germany.
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Figure 4: Price index numbers by CPD and NLCPD methods, each in relation to its popu-
lation weighted average (= 100).

7 Concluding remarks

Spatial price comparisons often suffer from incomplete price data. To deal with such sit-
uations, Summers (1973) introduced the CPD method. This regression approach provides
estimates of the regional price levels along with their standard errors.

The present paper has shown that it is mandatory for the CPD method that the regional
price dispersion of the various products is uniform. If it is not, the estimates of the standard
errors are biased. Even worse, when the data gaps are not completely at random, the
estimates of the regional price levels are systematically biased.

As a solution, this paper introduced the NLCPD method, a nonlinear generalization
of the CPD method. The NLCPD method amends the CPD method by parameters that
capture the product-specific price dispersion. Their estimates indicate whether the CPD
assumption of uniform price dispersion would have been reasonable. For all of the NLCPD
estimators, the formulas for their estimated standard deviations have been derived. In a
simulation, the deficiencies of the CPD method and the superiority of the NLCPD method
has been shown. Finally, in a price level comparison of the 401 German regions, the practical
applicability of the NLCPD method has been demonstrated.

The only drawback of the NLCPD method as compared to the CPD method is its
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nonlinear specification. As a consequence, iterative estimation procedures are required.
When the variation in the regional price levels is small and a product has only very few
observations, the iterative estimation of its price dispersion may not converge. To avoid
such problems, one may treat such a product in the same way it would have been treated
in a CPD regression. That is, instead of estimating the product’s price dispersion, one can
impose the restriction that the product’s price dispersion coincides with the dispersion of
the overall regional price levels (the CPD method imposes this restriction on all products).
Such a restricted NLCPD regression would still outperform the CPD regression.

In the literature, it is well known that the unweighted CPD and GEKS-Jevons index
number methods provide identical results when the data set is complete (e.g., World Bank,
2013, p. 108). Weinand and Auer (2019, pp. 35-37) show that both methods still coincide
when all regions have the same distribution of expenditure shares (as in Tab. 1). Even when
data gaps are present, there is a close relationship between the two methods (Weinand,
2022). Consequently, one could argue that any issue of one approach is likely to apply
also to the other one. This is a relevant question, because not only the CPD method but
also the GEKS-Jevons method is used in the International Comparison Program (World
Bank, 2020, p. 82) and in various national studies (surveyed in Majumder and Ray, 2020,
pp. 105-109 and Weinand and Auer, 2020, pp. 416-418). However, a careful analysis of this
question must be left for future research.

A Mathematical derivations

In the following, we provide the mathematical derivations underlying the paper. In partic-
ular, this includes results on bias and inference of the CPD method as well as the formulas
of the NLCPD method’s standard errors.

A.1 The NLCPD Model and Special Cases

Model (11) can be written as

y̆ = Ğπ +
(

G1
w1

+ G̃δ
)

⊙
(
D̆p

)
+ ŭ , (A.1)

where D̆ =
(
D̃2 . . . D̃R

)
, Ğ = (G1 . . . GN ) and G̃ =

(
G̃2 . . . G̃N

)
. The vectors y̆ and

ŭ contain the logarithmic prices, lnpr
i , and the error terms, ur

i , respectively. The param-
eters are π = (lnπ1 . . . lnπN )⊺, p =

(
lnP 2 . . . lnP R

)⊺
, and δ = (δ2 . . . δN )⊺, where the

symbol ⊺ denotes the transpose. The operator ⊙ denotes the Hadamard product, that is,
the elementwise multiplication of the column vectors

(
G1/w1 + G̃δ

)
and

(
D̆p

)
. When the

price data are complete, the number of price observations, B, is equal to NR.
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If all δi-values were known (but possibly different from unity), we could define the
matrix H̆ =

(
H2 . . . HR

)
with Hs =

(
G1/w1 +∑

j∈N\{1} G̃jδj

)
D̃s and we could write the

NLCPD model (A.1) in the following linear form:

y̆ = Ğπ +H̆p+ ŭ . (A.2)

It is assumed that the variance of the errors, ur
i , is

σ2
i = σ2 /√

wi . (A.3)

Thus, a weighted least squares approach should be applied. To this end, we define for each
product i a diagonal (Ri ×Ri)-matrix of weights, Wi = diag

(√
wi . . .

√
wi

)
, and combine

them in the diagonal (B ×B)-matrix

W =


W1 0R1×R2 . . . 0R1×RN

0R2×R1 W2 . . . 0R2×RN

... ... . . . ...
0RN ×R1 0RN ×R2 . . . WN

 ,

where 0Ri×Rj
is a (Ri ×Rj)-matrix all of whose entries are zero.

Furthermore, we define the three matrices G, D, and H . The matrix G is defined by

G = W Ğ =



√
w1Ğ1

√
w2Ğ2

...
√

wN ĞN

 ,

with the (Ri ×N)-matrices

Ğ1 =


1 0 · · · 0
1 0 · · · 0
... ... . . . ...
1 0 · · · 0

 , . . . ,ĞN =


0 0 · · · 1
0 0 · · · 1
... ... . . . ...
0 0 · · · 1

 .

The matrices D and H are given by

D =


D1

D2
...

DN

=



√
w1 D̆1

√
w2 D̆2

...
√

wN D̆N

 and H =


H1

H2
...

HN

=



√
w1 H̆1

√
w2 H̆2

...
√

wN H̆N

 , (A.4)
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where

D̆i =



−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


and H̆i =



−δi −δi · · · −δi

δi 0 · · · 0
0 δi · · · 0
... ... . . . ...
0 0 · · · δi


= δiD̆i ,

(A.5)
when product i is priced in all regions. When product i is missing in some region r, line r

of D̆i and H̆i must be deleted. In any case, D̆i and H̆i are (Ri × (R −1))-matrices.

Weighted least squares estimation of model (A.2) with the weighting matrix W is
equivalent to ordinary least squares estimation of the model

y = Gπ +Hp+u , (A.6)

where y = W y̆ and u = W ŭ. All entries of u, √
wiu

r
i , are identically and independently

distributed with √
wiu

r
i ∼ N

(
0,σ2

)
.

The least squares estimators of model (A.6) are

π̂

p̂

=
 G⊺G G⊺H

H⊺G H⊺H

−1 G⊺y

H⊺y


=
 (G⊺LG)−1 G⊺Ly

(H⊺MH)−1 H⊺My

 , (A.7)

with
π̂ =

(
l̂nπ1 . . . l̂nπN

)⊺
and p̂ =

(
l̂nP 2 . . . l̂nP R

)⊺
and

L = IB −H (H⊺H)−1 H⊺ (A.8)

M = IB −G(G⊺G)−1 G⊺ , (A.9)

where IB is the identity matrix with dimensions B ×B.

When all δi (i ∈ N ) are equal to unity, we get H = D and model (A.6) becomes the
CPD model:

y = Gπ +Dp+u . (A.10)
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The corresponding estimators are
π̂′

p̂′

=
 (G⊺KG)−1 G⊺Ky

(D⊺MD)−1 D⊺My

 , (A.11)

with
K = IB −D (D⊺D)−1 D⊺ . (A.12)

For the following derivations, some useful results are established. It can be shown that

G(G⊺G)−1 G⊺ =


G11 0R1×R2 · · · 0R1×RN

0R2×R1 G22 · · · 0R2×RN

... ... . . . ...
0RN ×R1 0RN ×R2 · · · GNN

 , (A.13)

with the (Ri ×Ri)-submatrices

Gii =


1/Ri 1/Ri · · · 1/Ri

1/Ri 1/Ri · · · 1/Ri
... ... . . . ...

1/Ri 1/Ri · · · 1/Ri

= 1
Ri

1Ri×Ri
. (A.14)

Thus,
tr
(
G(G⊺G)−1 G⊺

)
=
∑
i∈N

Ri
1

Ri
= N . (A.15)

For the matrix D we get the following result:

D⊺D = D̆⊺W ⊺W D̆ =
∑
i∈N

wiD̆
⊺
i D̆i =

∑
i∈N

wi (IR−1 +Ci) ,

where the (R −1)× (R −1)-matrix Ci is defined by

Ci =


c1 c1 . . . c1

c1 c2 . . . c1

... ... . . . ...
c1 c1 . . . cR−1

 ,

with cr = 1 when product i is observed in region r and cr = 0 otherwise. Note that

D⊺MD =
∑
i∈N

wi

(
D̆⊺

i D̆i − 1
Ri

D̆⊺
i 1Ri×Ri

D̆i

)
. (A.16)
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For the matrix H we get

H⊺H =
∑
i∈N

(δi)2 wiD̆
⊺
i D̆i =

∑
i∈N

(δi)2 wi (IR−1 +Ci) .

Furthermore,

D⊺MH =
∑
i∈N

δiwi

(
D̆⊺

i D̆i − 1
Ri

D̆⊺
i 1Ri×Ri

D̆i

)
.

When the data set is complete, some additonal results can be derived. When product i

is priced in all regions, we get Ci = 1(R−1)×(R−1). Then,

(D⊺D)−1 = IR−1 − 1
R

1(R−1)×(R−1) , (A.17)

where we exploited the rule that the inverse of some matrix [IZ +k1Z×Z ], with k being
some constant, is

[IZ +k1Z×Z ]−1 = IZ − k

Zk +11Z×Z . (A.18)

Furthermore,

D (D⊺D)−1 D⊺ =


D11 D12 . . . D1N

D21 D22 . . . D2N
... ... . . . ...

DN1 DN2 . . . DNN

 , (A.19)

with the (R ×R)-matrices

Dij = √
wiwj

(
IR − 1

R
1R×R

)
. (A.20)

Thus,
tr
(
D (D⊺D)−1 D⊺

)
= R −1 . (A.21)

Concerning the two components of (D⊺MD)−1 as specified in (A.16) we get

D̆⊺
i D̆i = IR−1 +1(R−1)×(R−1) (A.22)

and
1

Ri
D̆⊺

i 1R×RD̆i = 0(R−1)×(R−1) (A.23)

because D̆i1R×R = 0(R−1)×(R−1). Thus,

(D⊺MD)−1 = (D⊺D)−1 . (A.24)
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Furthermore,

D⊺MH = IR−1 +1(R−1)×(R−1) (A.25)

= D⊺D , (A.26)

where we exploited the restriction ∑i∈N wiδi = 1. (A.24) and (A.26) imply that

D⊺M = D⊺ and MD = MH = D . (A.27)

Since G⊺
i Di = 0N×R and G⊺D =∑

i∈N G⊺
i Di, we get

G⊺D = 0N×NR and D⊺G = 0NR×N . (A.28)

As a consequence,
G⊺K = G⊺ −G⊺D (D⊺D)−1 D⊺ = G⊺ . (A.29)

Analogously, we have

G⊺H = 0N×NR and H⊺G = 0NR×N (A.30)

and
G⊺L = G⊺ . (A.31)

A.2 Bias of the CPD Estimators

We use u′ to denote the vector of error terms arising in the estimation of the CPD model
(A.10) when model (A.6) is the correct model:

y = Gπ +Dp+u′ . (A.32)

Therefore, Hp+u = Dp+u′ and the expected value of the error term of the CPD model
(A.32) is given by

E
(
u′
)

= (H −D)p . (A.33)

The estimators of the NLCPD model (A.6) were stated in (A.7). They can be written
in the form

p̂ = p+(H⊺MH)−1 H⊺Mu (A.34)

and
π̂ = π +(G⊺LG)−1 G⊺Lu . (A.35)

Since E (u) = 0B×1, we get E (p̂) = p and E (π̂) = π. Thus, the estimators (A.34) and
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(A.35) would be unbiased.

The estimators of the CPD model (A.32) can be written in the form

p̂′ = p+(D⊺MD)−1 D⊺Mu′

and
π̂′ = π +(G⊺KG)−1 G⊺Ku′ .

Inserting (A.33) and taking expectations yields

E
(
p̂′
)

= (D⊺MD)−1 D⊺MHp (A.36)

and

E
(
π̂′
)

= π +(G⊺KG)−1 G⊺KHp .

For a complete data set we get the following result:

(D⊺MD)−1 D⊺MH = IR−1 . (A.37)

Thus, the CPD estimators p̂′ remain unbiased, provided the data set is complete. The
same is true for the CPD estimators π̂′, because (A.29) and (A.30) imply that G⊺KH =
G⊺H = 0N×(R−1).

With data gaps, however, the matrix (D⊺MD)−1 D⊺MH does not simplify to the
identity matrix. Suppose that the only data gap is product j in region 1 (B = NR −1 and
Rj = R −1). Then, instead of (A.22) and (A.23), we get for product j

wj

(
D̆⊺

j D̆j − 1
Rj

D̆⊺
j 1Rj×Rj

D̆j

)
= wj

(
IR−1 − 1

R −11(R−1)×(R−1)

)
.

However, for the other products, i ̸= j, relationships (A.22) and (A.23) remain valid. Thus,

D⊺MD = IR−1 +
(

1− wjR

R −1

)
1(R−1)×(R−1) . (A.38)

Also relationship (A.25) no longer applies. For product j we have

wjδj

(
IR−1 +1(R−1)×(R−1)

)
= wjδj

(
I(R−1) − 1

R −11(R−1)×(R−1)

)
,
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while for the other products, i ̸= j, relationships (A.22) and (A.23) remain valid. Thus,

D⊺MH = IR−1 +
(

1− wjδjR

R −1

)
1(R−1)×(R−1) . (A.39)

Inserting (A.38) and (A.39) in (A.36) yields

E
(
p̂′
)

=
(

IR−1 +
(

1− wjR

R −1

)
1(R−1)×(R−1)

)−1(
IR−1 +

(
1− wjδjR

R −1

)
1(R−1)×(R−1)

)
p .

Rule (A.18) implies that

(
IR−1 +

(
1− wjR

R −1

)
1(R−1)×(R−1)

)−1
= IR−1 + 1−R (1−wj)

(R −1)R (1−wj)
1(R−1)×(R−1) .

Furthermore,

1− wjδjR

R −1 = R −1−wjδjR

R −1 = (R −1−wjδjR)R (1−wj)
(R −1)R (1−wj)

.

Thus,

E
(
p̂′
)

=
(

IR−1 + wj (1− δj)
(1−wj)(R −1)1(R−1)×(R−1)

)
p

and for each entry E
(
l̂nP r′

)
of the vector E (p̂′) we get

E
(
l̂nP r′

)
= lnP r + wj (1− δj)

(1−wj)(R −1)
∑

s∈R\{1}
lnP s for r = 2, ...,R . (A.40)

For δj = 1, the quotient in (A.40) is equal to 0 and we get E (p̂′) = p. For δj < 1, the
quotient becomes positive. If region 1 (the region where product j is missing) is cheaper
than average, the average of the logarithmic price levels of the other regions is positive:∑

s∈R\{1} lnP s > 0. Thus, the estimated logarithmic price levels l̂nP r′ (r = 2, ...,R) are
upward biased. Since l̂nP 1′ = −∑s∈R\{1} l̂nP s′, the estimated logarithmic price level of
region 1 is downward biased. If region 1 were more expensive than the average of all regions,
the opposite bias would arise. For δj > 1, the directions of bias are exactly opposite to those
arising with δj < 1.

A.3 Inference in the CPD Method

When at least one δi-value is different from 1 and observations are (non-randomly) missing,
the weighted CPD estimator p̂′ is biased and inference is invalid, anyway. Therefore, one
can restrict the following analysis to the case of complete data.
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Exploiting (A.11), (A.27), and (A.29), the estimated CPD model can be written in the
form

ŷ′ =
(
G(G⊺G)−1 G⊺ +D (D⊺D)−1 D⊺

)
y .

Inserting this result in û′ = y − ŷ′ yields

û′ = Ny , (A.41)

with
N = INR −G(G⊺G)−1 G⊺ −D (D⊺D)−1 D⊺ . (A.42)

Relationships (A.28) and (A.30) imply that

ND = NG = 0NR×NR . (A.43)

Furthermore, we know from (A.27) that D⊺H = D⊺MH = D⊺D. Thus,

NH = H −D . (A.44)

We know that u′ = (H −D)p+u = NHp+u and E(u) = 0NR×1. Thus,

E
(
u′u′⊺

)
= NHpp⊺H⊺N +σ2INR , (A.45)

where σ2 is the variance used in (A.3).

Since (A.27) to (A.31) apply, the variance-covariance matrix of the CPD estimators p̂′

is

V
(
p̂′
)

= (D⊺D)−1 D⊺E
(
u′u′⊺

)
D (D⊺D)−1 . (A.46)

Inserting expression (A.45) in (A.46) and using (A.43) yields

V
(
p̂′
)

= σ2 (D⊺D)−1 , (A.47)

where the precise form of (D⊺D)−1 was given in (A.17).

Using (A.29), the variance-covariance matrix of the CPD estimators π̂′ is

V
(
π̂′
)

= (G⊺G)−1 G⊺E
(
u′u′⊺

)
G(G⊺G)−1 . (A.48)
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Inserting expression (A.45) in (A.48) and using (A.43) yields

V
(
π̂′
)

= σ2 (G⊺G)−1 . (A.49)

Substituting in (A.47) and (A.49) the variance σ2 by its CPD estimator,

(σ̂′)2 = û′⊺û′

NR −N −R +1 , (A.50)

yields the estimated CPD variance-covariance matrices V̂ (p̂′) and V̂ (π̂′). The square roots
of the diagonal elements of V̂ (p̂′) and V̂ (π̂′) are the estimators of the standard errors of
the CPD estimators:

ŝe′
(
l̂nP r′

)
= σ̂′

√
(R −1)/R

ŝe′
( ̂lnπ′

i

)
= σ̂′

/√
Rwi .

For these estimators to be unbiased, the estimate of σ2 must be unbiased. Thus, we have
to examine whether

E
(
û′⊺û′

)
= σ2 (NR −N −R +1) . (A.51)

Substituting in (A.41) the vector y by (Gπ +Dp+u′) yields

û′ = NGπ +NDp+Nu′ = Nu′ .

Therefore,
û′⊺û′ = u′⊺N⊺Nu′ = tr

(
u′⊺Nu′

)
= tr

(
uu′⊺N

)
.

Taking expections gives

E
(
û′⊺û′

)
= E

(
tr
(
u′u′⊺N

))
= tr

(
E
(
u′u′⊺

)
N
)

.

Inserting (A.45) yields

E
(
û′⊺û′

)
= tr(NHpp⊺H⊺N )+ tr

(
σ2N

)
. (A.52)

Note that

tr
(
σ2N

)
= σ2 (NR −N −R +1) , (A.53)

where we exploited the results (A.15) and (A.21). Thus, unbiasedness requires that in (A.52)
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we have tr(NHpp⊺NH⊺) = 0 or, equivalently, tr(H −D)pp⊺ (H⊺ −D⊺) = 0. However,

(H −D)pp⊺ (H⊺ −D⊺)

=
 ∑

r∈R\{1}
(lnP r)2




(δ1–1)(δ1–1)√
w1w1D̆1D̆⊺

1 . . . (δ1–1)(δN –1)√
w1wN D̆1D̆⊺

N
... . . . ...

(δN –1)(δ1–1)√
wN w1D̆N D̆⊺

1 . . . (δN –1)(δN –1)√
wN wN D̆N D̆⊺

N

 ,

with the (R ×R)-matrices

D̆iD̆
⊺
j =



R −1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 · · · 0
... ... ... . . . ...

−1 0 0 · · · 1


∀i, j ∈ N .

Thus, tr
(
D̆iD̆

⊺
i

)
= (R −1)+(R −1) = 2(R −1) and

tr
(
(H −D)pp⊺ (H −D)⊺

)
= 2(R −1)

 ∑
r∈R\{1}

(lnP r)2
∑

i∈N
(δi −1)2 wi . (A.54)

This expression is larger than zero and, therefore, the estimator (σ̂′)2 is larger than σ2,
except when δi = 1 for all i ∈ N .

A.4 Inference in the NLCPD Model

In the following, it is assumed that the data set is complete. The NLCPD regression model
was given in (A.1). The estimated model is

̂̆y = Ğπ̂ +
(

G1
w1

+ G̃δ̂
)

⊙
(
D̆p̂

)
. (A.55)

One can write this model in the following more compact form:

̂̆y = Ğπ̂ +Ĥp̂ ,

with

Ĥ =


Ĥ1

Ĥ2
...

ĤN

 and Ĥi =



−δ̂i −δ̂i · · · −δ̂i

δ̂i 0 · · · 0
0 δ̂i · · · 0
... ... . . . ...
0 0 · · · δ̂i


for i ∈ N ,
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where δ̂1 =
(
1−w⊺δ̂

)/
w1 and w = (w2 w3 . . . wN )⊺.

The Jacobian matrix, J , can be computed from the estimated regression model (A.55).
This (NR) × (2N + R − 2)-matrix has three submatrices. The first one is formed by the
columns related to the derivatives with respect to l̂nπi. This submatrix is equal to Ğ. The
second submatrix is formed by the columns related to the derivatives with respect to δ̂i.
Defining the diagonal (R ×R)-matrix

P̂ = diag
(
−p̂ 1(R−1)×1 p̂⊺

)
,

they can be written as
(
IN ⊗ P̂

)
G̃, where ⊗ denotes the Kronecker product. Note that

−p̂ 1(R−1)×1 is the residually computed value l̂nP 1 and that

(
IN ⊗ P̂

)
G̃ =


P̂ G̃1

P̂ G̃2
...

P̂ G̃N

=


P̂ G̃1

P̂ Ğ2
...

P̂ ĞN

 ,

with

G̃1 =


−w2/w1 −w3/w1 · · · −wN /w1

−w2/w1 −w3/w1 · · · −wN /w1
... ... . . . ...

−w2/w1 −w3/w1 · · · −wN /w1

 .

The third submatrix of J is formed by the columns related to the derivatives with respect to
l̂nP r. This submatrix is equal to Ĥ . Putting the three submatrices together, the Jacobian
matrix can be written in the following compact form:

J =
[

Ğ
(
IN ⊗ P̂

)
G̃ Ĥ

]
. (A.56)

Using the diagonal (NR)× (NR)-matrix W ⊺W , we get the following quadratic form:

J⊺W ⊺W J =


A11 0N×(N−1) 0N×(R−1)

0(N−1)×N A22 A23

0(R−1)×N A32 A33

 , (A.57)
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with

A11 = R diag(w1 w)

A22 =
(

diag(w)+ w⊺w

w1

)∑
r∈R

(
l̂nP r

)2

A33 =
(
I(R−1) +1(R−1)×(R−1)

) ∑
i∈N

wi

(
δ̂i

)2

A23 = (A32)⊺ = diag(w)dp̃⊺ ,

where d =
(
δ̂ − δ̂1 1(N−1)×1

)
and p̃ =

(
p̂− l̂nP 1 1(R−1)×1

)
.

The inverse of the quadratic form (A.57) is denoted by

(J⊺W ⊺W J)−1 =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 , (A.58)

with

B11 = A−1
11 (A.59)

B22 =
(
A22 −A23A−1

33 A32
)−1

(A.60)

B33 =
(
A33 −A32A−1

22 A23
)−1

. (A.61)

Multiplying the diagonal elements of (A.58) by the estimated model variance,

σ̂2 =
Sûr

i ûr
i

RN −2N −R +2 , (A.62)

and taking the square root of each of these products, gives the estimated standard errors
of the NLCPD’s estimated parameters. For that purpose, we derive the precise definitions
of the matrices B11, B22, and B33.

Obviously, B11 = (1/R) diag(w)−1. For the derivation of B22 and B33 we need the
inverses of A22 and A33. For the latter, we can invoke rule (A.18) and get

A−1
33 =

IR−1 − 1
R

1(R−1)×(R−1)

∑
i∈N

wi

(
δ̂i

)2
−1

.

For the derivation of A−1
22 we make use of a generalization of rule (A.18) that is due to
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Miller (1981, pp.68-69) and obtain

A−1
22 =

diag(w)−1 −1(N−1)×(N−1)

 1∑
r∈R

(
l̂nP r

)2 .

Next, we insert the definitions of A−1
22 and A−1

33 into (A.60) and (A.61) and, finally,
obtain

B22 = A−1
33 + 1∑

r∈R

(
l̂nP r

)2 V

B33 = A−1
22 − 1∑

r∈R

(
l̂nP r

)2

1− ∑
i∈N

wi

(
δ̂i

)2

∑
i∈N

wi

(
δ̂i

)2 Z ,

where

V = dd⊺ +
(
δ̂1 −1

) (
d11×(N−1) +1(N−1)×1d⊺

)
+
(
δ̂1 −1

)2
1(N−1)×(N−1)

Z = pp⊺ + l̂nP 1
(
p11×(R−1) +1(R−1)×1p⊺

)
+
(

l̂nP 1
)2

1(R−1)×(R−1) .

Multiplying the diagonal elements of B11, B22, and B33 by σ̂ gives the formulas (18), (20),
and (19).

B Simulation results

Table 5 provides error metrics for all parameters of the simulation setting described in
Section 5.1. Mean absolute bias and mean RMSE of the estimates of lnP r are replicated
from Tab. 2. Mean absolute bias and mean RMSE of the estimates of lnπ and δ are
analogously defined to Eq. (21), but averaged over products instead of regions, e.g.:

Bias
(
l̂nπ

)
= 1

N

∑
i∈N

Bias
(
l̂nπi

)
= 1

N

∑
i∈N

1
L

L∑
l=1

(
l̂nπi,l − lnπi,l

)

RMSE
(
l̂nπ

)
= 1

N

∑
i∈N

RMSE
(
l̂nπi

)
= 1

N

∑
i∈N

√√√√√ 1
L

L∑
l=1

(
l̂nπi,l − lnπi,l

)2
.

for the lnπi-parameters of the NLCPD method. For the CPD method, Bias
( ̂lnπ′

)
and

RMSE
( ̂lnπ′

)
are defined in the same way.

The CPD method does not provide any estimates for δi but implicitly assumes that
δi = 1. Consequently, in the computation of Bias(δ̂′) and RMSE(δ̂′) we set δ̂′

i,l = 1 for
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all products i and iterations l. Due to this exogenous restriction of the CPD model, the
estimates δ̂′ are found to be markedly biased (see third line of Tab. 5).

Scenario 1 Scenario 2 Scenario 3
CPD NLCPD CPD NLCPD CPD NLCPD

Bi
as

lnP r 0.0002 0.0001 0.0003 0.0002 0.0133 0.0002
lnπi 0.0003 0.0003 0.0004 0.0004 0.0005 0.0004
δi 0.5527 0.0023 0.5527 0.0035 0.5527 0.0035

R
M

SE

lnP r 0.0097 0.0081 0.0201 0.0110 0.0250 0.0105
lnπi 0.0130 0.0130 0.0205 0.0167 0.0218 0.0178
δi 0.6262 0.1397 0.6262 0.1850 0.6262 0.2157

Table 5: Mean absolute bias and mean RMSE of estimated parameters.
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