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1. Introduction 

It has been more than ten years since Ivancic, Diewert and Fox (2009; 2011) proposed 

using multilateral methods for dealing with scanner data in the Consumer Price Index 

(CPI). Several countries, including Australia, Belgium, Luxembourg, Netherlands, New 

Zealand and Norway, have now implemented multilateral methods in CPI production. 

Most of them chose the GEKS-Törnqvist method, to be explained in detail later, where 

bilateral matched-model Törnqvist price indexes are inputs. Matching products across 

time ensures that like is compared with like. 

Clearance sales are common in supermarkets and many other retailers. Clearance 

prices are typically unusually low and the corresponding quantities sold relatively large. 

Since prices do not return to regular levels after the fast decline, matched-model price 

indexes potentially suffer from downward bias (though the magnitude of the bias is not 

necessarily the same for all types of indexes). This is true for bilateral and multilateral 

price indexes. 

There are different ways of dealing with the issue. For example, the Australian 

Bureau of Statistics removes transactions that are deemed clearance sales. I propose an 

alternative method where the “missing prices” for the unmatched new and disappearing 

products are imputed in the GEKS-Törnqvist index using predicted values from another 

multilateral index method. The basic idea is to impute prices at regular levels to mitigate 

downward bias. 

Section 2 defines the imputation Törnqvist price index and shows, following De 

Haan and Krsinich (2014), how this index can be decomposed into the matched-model 

Törnqvist price index and components for the unmatched products. Section 3 describes 

the idea behind the (non-hedonic) imputation method – it is essentially a modification of 

carrying forward/backward observable prices and adjusting them for inflation. Section 4 

then proposes using the regression-based multilateral weighted Time Product Dummy 

method as imputation method because this yields useful imputed prices in a simple way. 

Section 5 outlines GEKS-Törnqvist with the proposed imputations. Section 6 discusses 

a few situations where these imputations may not be appropriate. Section 7 summarizes 

and points to further work.1 
 

1 Frances Krsinich (Statistics New Zealand) and I are hoping to collaborate, revise the paper and add an 

empirical section using supermarket scanner data for New Zealand to illustrate the method and compare 

the results with those based on the Australian approach. 
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2. The imputation Törnqvist price index 

Suppose we want to measure aggregate price change for a set of products U which is 

fixed across the sample period 0,...,T . The prices of products i U  in the base period 0 

and in comparison periods t (0 )t T   are denoted by 0
ip  and t

ip , and the expenditure 

shares by 0
is  and t

is . A useful measure of aggregate price change between 0 and t would 

be the bilateral Törnqvist price index 
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In reality, the set of products is unlikely to be constant; substantial churn is often 

found in scanner data. Let 0U  and tU  denote the set of products purchased in periods 0 

and t, respectively. The (matched) set of products purchased in both period 0 and period 

t is tt
M UUU  00 . The (disappearing) subset of 0U  that is not purchased in period t is 

denoted by t
DU 0 , and the (new) subset of tU  that is not purchased in period 0 is denoted 

by t
NU 0 . So, we have 000 UUU t

D
t

M   and tt
N

t
M UUU  00 . 

Each product purchased in period 0 and/or period t should be included in a price 

comparison between periods 0 and t. That is, a proper bilateral price index is defined on 

the union t
N

t
D

t
M

t UUUUU 0000   of the product sets. However, period t prices for 
t

DUi 0  and period 0 prices for t
NUi 0  are “missing” and must be imputed. I denote the 

imputed values by t
ip̂  and 0ˆ

ip . By definition, we have 0t
is  for t

DUi 0  and 00 is  for 
t

NUi 0 , and the imputation Törnqvist price index is thus defined as2 
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De Haan and Krsinich (2014) showed that this index can be decomposed as3 

0
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2 This has also been referred to as a single imputation (Törnqvist) price index. A double imputation index 

in addition replaces the observable period 0 and period t prices for the disappearing and new products, 

respectively, by estimated values; see De Haan (2004) and Hill and Melser (2008). 

3 Diewert, Fox and Schreyer (2018) derived the same decomposition in a slightly different way. De Haan 

(2002) derived a similar decomposition for the (single) imputation Fisher price index. 
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where 
 t

DUi itD ss 0

00
)0(  is the aggregate period 0 expenditure share for the disappearing 

products and 
 t

NUi

t
i

t
tN ss 0)0(  is the aggregate period t expenditure share for the new 

products. The price indexes in the bracketed terms of (3) are: the Törnqvist index for the 

matched products, 
0
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shares in these price indexes are normalized so that 0
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But how should we estimate the imputed prices in the imputation price indexes 
0t

DIGLP  and 0t
NIGPP ? If information on product characteristics is available to the statistical 

agency, hedonic regression can be used; for applications to consumer electronics goods 

(in the context of the multilateral GEKS-Törnqvist method), see De Haan and Krsinich 

(2014) and De Haan and Daalmans (2019). When characteristics information is lacking, 

or if the agency is reluctant to use hedonics, non-hedonic imputation methods might be 

an option, depending on the circumstances. Section 3 outlines a non-hedonic imputation 

method which aims to deal with clearance sales. 

3. Clearance sales and non-hedonic imputations 

Clearance sales are characterized by unusually low prices. Like any matched (maximum 

overlap) price index, the matched Törnqvist potentially suffers from downward bias due 

to clearance sales. This will also be the case for an imputation Törnqvist index where 

the clearance price is carried forward and adjusted for inflation. Inflation adjustment is 

required to prevent further downward bias when prices are generally increasing. I will 

propose a non-hedonic imputation method where inflation-adjusted regular prices serve 

as imputations. Admittedly, this is not a novel idea; several statistical offices have been 

using a similar approach for a long time, albeit in the traditional context without scanner 

data.4 

 
4 The Australian Bureau of Statistics is one of them. They are using scanner data from supermarkets in the 

CPI, but the price indexes are matched ones, with no imputations. As mentioned earlier, transactions that 

are deemed clearance sales are removed to prevent downward bias. 
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As before, I assume that prices and quantities from scanner data are available for 

the entire sample period 0,...,T . Product i is purchased in periods *0,...,t t  *( )t T  

and has disappeared in period * 1t  . The last observed price, 
*t

ip , is a clearance price. 

Now how can we calculate a regular price for this product that serves as an input for the 

imputation of the “missing prices” for * 1,...,t T ? A straightforward option is to use the 

price in the period prior to the clearance sale, 
* 1t

ip  , and multiply it by an appropriate 

price index going from * 1t   to t *( 1,..., )t t T  , say 
* 1,t tP  , to obtain imputed values 

* *1 1,ˆ t t t t
i ip p P  . In this case, the last observable non-clearance price is carried forward 

and adjusted for inflation. 

There are some issues. We must be able to identify clearance sales. This can be 

difficult, in particular if we want our method to work at scale. So it seems worthwhile 

having an imputation method that does not rely on the identification of clearance sales. 

Furthermore, there seems to be no reason to just pick a single price, 
* 1t

ip  , to indicate a 

regular price if more observable prices for this product are available. But then we need 

to decide how to combine all observations into a regular price. There is also the issue of 

choice of price index to adjust for inflation. 

The non-hedonic method I am proposing to impute the “missing prices” consists 

of the following three steps: i) all (or most) of the observable prices of the disappearing 

product are deflated to obtain estimates of the base period price; ii) an average of these 

estimated base period prices is taken; iii) the average value is adjusted for inflation. As 

will be seen, this method is inspired by a multilateral index number method. 

Let iS  denote the set of time periods with observable prices for product i which 

are used to estimate a regular base period price. The weighted arithmetic average of the 

estimated base period prices is 
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with weights t
iw  ( 1)
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t
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unweighted average. The geometric counterpart to (4) is 
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In equations (4) and (5) a generic deflator 0tP  is used. In practice, we have to choose a 

particular index, and the choice in (4) and (5) need not be the same. It does seem useful 
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though to use the same price index for deflation and for subsequent “price updating” in 

each of the variants. In that case the imputed period t price for a disappearing product i 

becomes 

0
0

0 0
ˆ ( )

i i

t
t ti
i i i i

S S

p P
p A w P w p

P P


  

 
  

   
    

  
  ;         (6) 

0
0

0 0
ˆ ( )

i i

i i

w wt
t ti
i i

S S

p P
p G P p

P P

 




 
  

   
    

  
  .         (7) 

A few things are worth noting. The set iS  includes the clearance sales period *t . 

This means there may still be some downward bias left due to clearance sales but taking 

an average of the deflated prices across multiple periods reduces the bias, hopefully to a 

large extent. Notice further that 0 0/tP P   in (6) and (7) is a measure of aggregate price 

change between period   and period t. If we want this measure to be based on the same 

index number formula as 0tP  and 0P  , which sounds like a good idea, then we require a 

transitive price index method. Finally, given that the Törnqvist price index is geometric, 

I am in favor of using (7) rather than (6). 

The next section discusses how the multilateral, hence transitive, weighted Time 

Product Dummy method can be used to estimate the imputed prices ˆ ( )t
ip G  given by (7) 

for the disappearing products. Estimation of the “missing” base period prices of the new 

products will also be discussed. 

4. Borrowing from TPD 

The Time Product Dummy (TPD) method is a regression-based multilateral method that 

produces transitive price indexes, i.e., price indexes which are insensitive to the choice 

of base period.5 Suppose there are N different products across the sample period, most 

of which are unlikely to be purchased in each period. The price of product i in period t 

is now modelled as the product of a factor for time, say )exp( t  and a product-specific 

factor, say )exp( i , thus 

)exp()exp( i
tt

ip  .         (8) 

 
5 The Time Product Dummy method adapts Summers’ (1973) Country Product Dummy (CPD) method to 

comparisons across time. 
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After taking logarithms of both sides of (8) and adding errors t
i  with mean 0, 

the following equation is obtained, which can be estimated by least squares regression 

on the pooled data of the entire sample period: 

t
i

N

i
ii

T

t

t
i

tt
i DDp   


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1

11

ln ;         (9) 

t
iD  is a dummy variable that has the value 1 if the observation relates to period t and 0 

otherwise, and iD  is a dummy variable with the value 1 if the observation relates to 

product i and 0 otherwise. Since an intercept   is included, dummy variables for period 

0 and product N are left out to identify the model. The least squares parameter estimates 

are ̂ , t̂  ),...,1( Tt   and i̂  )1,...,1(  Ni , with 0ˆ0   and 0ˆ N . The predicted 

prices in periods 0 and t equal )ˆexp()ˆexp(ˆ 0
iip   and )ˆexp()ˆexp()ˆexp(ˆ

i
tt

ip  . 

The TPD price index between periods 0 and t is given by 0, ˆexp( )t t
TPDP  . 

I assume that (9) is estimated by Weighted Least Squares (WLS) regression with 

expenditure shares t
is  ),...,0( Tt   as weights.6 The dummy variable (i.e., fixed effects) 

specification of the model ensures that the weighted regression residuals sum to zero in 

each time period:  
 tt Ui

t
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t
iUi

t
i

t
i psps ˆlnln . It is easy to verify, using 0 0ˆ ˆ/t t

TPD i iP p p , 

that the weighted TPD index can be written as 
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    ),...,0( Tt  .       (10) 

The denominator of the first expression of (10) equals 1 because the period 0 weighted 

regression residuals sum to zero. The TPD index can be viewed as a geometric Paasche-

type price index where all the base period prices are equal to the predicted values from 

the estimated TPD model. 

An expression for the predicted base period prices from TPD can be obtained as 

follows. The dummy variable specification ensures that the weighted residuals for every 

product sum to zero across all of the time periods in which the product is purchased (the 

set iS ), i.e., ˆln( / ) 0
i

t t t
i i it S

s p p


 . Thus, we have 

 
6 As far as I know, weighting by expenditure share in a TPD regression was first proposed by Diewert 

(2004). Rao (2005) showed the equivalence of expenditure-share weighted CPD and his multilateral “Rao 

system”. 
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Substituting 0 0ˆ ˆt t
i i TPDp p P  into (11) and rearranging gives 
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Equation (12) implies that we can express the predicted base period price for product i 

as 
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Notice the similarity of equation (13) with (5); in (13), the TDH index is used to 

deflate the observable prices, and the (normalized) expenditure shares serve as weights. 

Since 0 0ˆ ˆt t
i TPD ip P p , we find 
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which is the TPD version of (7). I propose using these estimates as imputations for the 

“missing” period t prices of the disappearing products in the imputation Törnqvist price 

index, i.e. in the imputation geometric Laspeyres price index 0t
DIGLP  defined in Section 2. 

Moreover, I also propose using the estimates (13) as imputations for the “missing” base 

period prices of the new products, i.e., in the imputation geometric Paasche price index 
0t

NIGPP . 

The TPD system of equations given by (10) and (13) can be solved iteratively, 

without running a regression. However, calculating the TPD index via the estimation of 

(9) with econometric software provides useful diagnostics such as measures of fit and 

standard errors. Also, modelling can help better understand the method. Importantly, we 

do not have to calculate the imputed prices using (13) and (14) as they can be computed 

from the TPD regression output: 0 ˆˆ exp( )Np  , )ˆexp()ˆexp(ˆ 0
iip   for 1,..., 1i N  , 

and 0 ˆˆ ˆ exp( )t t
i ip p   for 1,...,i N  and 1,...,t T . 

Products purchased in a single period can be omitted from the TPD regression. 

Their observable prices lie on the regression surface, i.e., 0 0ˆ
i ip p  and ˆ t t

i ip p , and so 

they do not affect the results. This follows directly from equations (13) and (14). 
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5. GEKS-Törnqvist with TPD imputations 

In scanner data, the number of matches in the data between the base period 0 and the 

comparison period t often diminishes quite rapidly over time. The bilateral imputation 

Törnqvist price index then becomes increasingly model-based. Also, it will ignore many 

matched products that may be available across the entire window T,...,0 . An alternative 

approach is to calculate the period-on-period chained imputation Törnqvist price index. 

However, empirical research revealed that high-frequency chaining of matched-product 

price indexes, including superlative price indexes, can lead to significant drift (Feenstra 

and Shapiro, 2003; Ivancic, 2007). There are no reasons to believe that imputations for 

the “missing” prices will alleviate chain drift. 

To deal with the chain drift problem, Ivancic, Diewert and Fox (2011) proposed 

using a multilateral method, in particular GEKS (Gini, 1931; Eltetö and Köves, 1964; 

Szulc, 1964). De Haan and Van der Grient (2011) followed up on their work and used 

bilateral matched-product Törnqvist price indexes rather than Fisher indexes as building 

blocks in the GEKS procedure.7 I also focus on GEKS-Törnqvist but now using bilateral 

imputation Törqnvist price indexes, based on weighted TPD, instead of their matched 

counterparts. 

Denoting the link period by l )0( Tl  , the imputation GEKS-Törnqvist price 

index going from period 0 to period t ),...,1( Tt   can be expressed as 

1
0 0 1

0

T
t l lt T

IGEKS T IT IT
l

P P P 




    .       (15) 

Note that l, the “base period” in lt
ITP , can be greater than t. Taking the mean across all 

possible link periods ensures transitivity. For 0l  and tl  , we have 00 0 0t t
IT IT ITP P P  and 

0 0t tt t
IT IT ITP P P  – in GEKS, the direct comparison between 0 and t weights twice as much 

as each of the indirect comparisons. 

Substituting (3) into (15) yields the following decomposition: 

0 0 0t t t
IGEKS T MGEKS TP P   ,       (16) 

where 
1/( 1)

0 0

0

TTt l lt
MGEKS T T Tl

P P P


 
     is the matched GEKS-Törnqvist price index and 

where 0t  is defined by 

 
7 The GEKS-Törnqvist index is also known as CCDI (Caves, Christensen and Diewert, 1982; Inklaar and 

Diewert, 2016) index. 
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This imputation component has a rather complex structure. Of course, there is no need 

to estimate it independently if we want to know its value, because it can be calculated as 
0 0 0/t t t

IGEKS T MGEKS TP P   . 

Estimation of the proposed imputation GEKS-Törnqvist price index is easy. For 

the window 0,...,T  and N different products, we just need to complete the ( 1)T N   

matrix of observed prices with the TPD-based imputations and then calculate a GEKS-

Törnqvist price index from the full matrix (and the corresponding matrix of expenditure 

shares).8 Summers (1973) stressed that his CPD method was specifically designed to fill 

the holes in the prices matrix, called the “tableau”. Essentially, I am making use of this 

property. 

Empirical work has indicated that the matched GEKS-Törnqvist price index (and 

other multilateral indexes) can be sensitive to the choice of window length (ABS, 2017). 

One of the causes seems to be clearance sales. Due to the imputations for the “missing 

prices”, imputation GEKS-Törnqvist indexes are likely to be less sensitive to clearance 

sales, hence to the choice of window length. 

To include strongly seasonal products, the window should be at least 13 months 

long (or 5 quarters for a quarterly CPI). In multilateral indexes, past price movements 

affect measured recent price changes so that recent changes become less “characteristic” 

as the window length grows. To reduce the loss of characteristicity, the window should 

not be too long. 

A drawback of multilateral methods is that when additional data is available and 

the indexes are estimated on the extended data set, previous estimates will be revised. 

Different methods have been suggested to deal with such revisions; for an overview, see 

Van Kints, De Haan and Webster (2019). Diewert and Fox (2022) and Fox, Levell and 

O’Connell (2022) recommended using a rolling window of 25-months (9-quarters) with 

a so-called mean splice for updating the matched GEKS-Törnqvist index. I recommend 

this strategy for imputation GEKS-Törnqvist too. 

 
8 Graham White’s R package IndexNumR includes matched GEKS-Törnqvist and weighted TPD price 

indexes and could be used. The package is available from CRAN and GitHub. 
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6. A few issues 

It is worth emphasizing that the choice for applying TPD-based imputations was made 

to simplify implementation in CPI production, in particular when the statistical office is 

calculating TPD along GEKS-Törnqvist. It can be argued that in our context it would be 

more appropriate to use the matched GEKS-Törnqvist index for deflating the observable 

prices and adjusting the average base period price estimate for inflation. Instead of (14), 

we would then have 
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But in this case, it is not so obvious why we should weight by expenditure share. Taking 

the unweighted average of the deflated prices can perhaps be justified as this treats all 

time periods as equally important. Note also that, for measuring aggregate price change, 

expenditure-share weighted TPD is arguably better than unweighted TPD. Yet it will be 

interesting to examine how imputations from unweighted TPD compare to the proposed 

imputations. 

A potential problem with scanner data is that barcodes may change even if the 

products stay the same from the consumers’ perspective, for instance in case of slight 

changes in the type of packaging. Price changes that occur during such relaunches do 

not affect matched bilateral indexes when products are identified by barcode (Reinsdorf, 

1999; De Haan, 2002), and this carries over to multilateral price indexes. The proposed 

non-hedonic imputation method cannot resolve the relaunch problem. Lamboray (2022) 

discussed a non-hedonic imputation approach (in a GEKS-Fisher context) where unit 

values across all the available products are used for imputing the “missing prices”. This 

approach does take relaunches into account but at the risk of introducing unit value bias. 

Some statistical offices, notably those in Belgium and Australia (ABS, 2017), are using 

the Stock Keeping Unit (SKU) rather than the usually more detailed Global Trade Item 

Number (GTIN) to identify individual products. This is likely to alleviate the relaunch 

problem without introducing unit value bias because only very similar products tend to 

receive the same SKU.9 

 
9 The Netherlands use the multilateral Geary-Khamis method (Geary, 1958; Khamis, 1972) for scanner 

data. This method does not allow imputations. To account for relaunches, Chessa (2016) defined products 

at a much less detailed level, potentially leading to unit value bias. 
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There are other situations where the proposed imputation method is unsuitable. 

This method was developed for products sold in supermarkets and other retailers where 

quality improvements due to technological change are not very important. For consumer 

electronics goods and other high-tech products, hedonic imputation methods are needed, 

which explicitly adjust for quality change using information on product characteristics.10 

Hedonic imputations will also deal with the relaunch problem (De Haan and Daalmans, 

2019). 

Clearance sales and relaunches belong a broader phenomenon: life cycle pricing. 

Life cycle effects are common for consumer electronics goods and fashion goods like 

clothing. Not surprisingly, Greenlees and McClelland (2010) found that rolling-window 

GEKS did not reduce downward bias in the matched Törnqvist price index for apparel 

while hedonic regression did. Melser and Syed (2016) discussed a non-hedonic method 

to deal with life cycle effects. Their method requires estimating life cycle functions, and 

I am afraid this hampers implementation in CPI production. 

7. Summary and future work 

Clearance sales can lead to downward bias in matched price indexes, including GEKS-

Törnqvist indexes. There are various ways of dealing with the issue. One way is to try 

and identify clearance sales and delete them. The identification of clearance sales may, 

however, be arbitrary. More broadly, deleting data which are essentially “correct” is not 

an ideal solution. This paper proposes an alternate method where the “missing prices” in 

the GEKS-Törnqvist price index are imputed using predicted values from the weighted 

Time Product Dummy. 

Unfortunately, I have not yet been able to apply the proposed method to data. As 

mentioned earlier (in footnote 1), Frances Krisinich (Statistics New Zealand) and I are 

aiming to collaborate again and apply the method to New Zealand supermarket scanner 

data to examine how it performs and how the results compare with those found using a 

clearance sales filter. 

 
10 De Haan and Krsinich (2014) estimated rolling-window hedonic imputation GEKS-Törnqvist indexes 

for consumer electronics goods using New Zealand scanner data. The bilateral imputation Törnqvist price 

indexes that served as inputs in GEKS were found by running a specific type of weighted bilateral Time 

Dummy Hedonic regressions. Their ITRYGEKS method has been implemented in the New Zealand CPI 

(Statistics New Zealand, 2014). 
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