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Nearest Neighbor Imputation for Survey Data

Jiahua Chen1 and Jun Shao2

1. Introduction

Imputation is commonly applied to compensate for nonresponse in sample surveys

(Kalton 1981; Sedransk 1985; Rubin 1987). The nearest neighbor imputation (NNI)

method is used in many surveys conducted at Statistics Canada, the U.S. Bureau of Labor

Statistics, and the U.S. Census Bureau, and this trend will continue because of the avail-

ability of a computer software, the Generalized Edit and Imputation System, which pro-

vides a simple way of performing NNI (Cotton 1991; Rancourt, SaÈrndal, and Lee 1994;

Kovar, Whitridge, and MacMillan 1998). Let us begin with an introduction of the NNI

method in the simplest case. Consider a bivariate sample (x1; y1),. . . ; �xn; yn) and suppose

that r of the n y-values are observed (respondents), the rest of m � n ÿ r y-values are miss-

ing (nonrespondents), and all x-values are observed. For simplicity we assume that

yr�1; . . . ; yn are missing. The NNI method imputes a missing yj, r � 1 # j # n, by yi,

where 1 # i # r and i is the nearest neighbor of j measured by the x-variable, i.e., i satis®es

jxi ÿ xjj � min
1#l#r

jxl ÿ xjj �1:1�

If there are tied x-values, then there may be multiple nearest neighbors of j and i is ran-

domly selected from them. Thus, if x is a categorical variable, then the NNI method
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imputes nonrespondents in category x by a random sample from the respondents in the

same category, which is the same as the well-known random hot deck imputation method.

Our study, however, focuses on the case where x has a continuous (or nearly continuous)

distribution. In applications, NNI is often carried out by ®rst dividing the sample into

several ``imputation classes'' and then applying (1.1) within each imputation class (see

Section 2).

The NNI method has some nice features. First, it is a hot deck method in the sense that

nonrespondents are substituted by a value of the same variable from a respondent of the

same ®le; the imputed values are actually occurring values, not constructed values, and

they may not be perfect substitutes, but are unlikely to be nonsensical values. Second,

the NNI method may be more ef®cient than other hot deck methods such as the mean

imputation and the random hot deck imputation, since the NNI makes use of auxiliary

information provided by the x-values and is a nonrandom imputation method (in the sense

that nonrespondents are imputed by deterministic values, given the y-respondents and x-

values). Third, the NNI method does not use an explicit model relating y and x and, hence,

it is expected to be more robust against model violations than methods based on

explicit models, such as ratio imputation and regression imputation. Finally, one of

the results in the current article shows that the NNI method provides asymptotically

valid distribution and quantile estimators, which is a superiority over the mean, ratio,

and regression imputation methods which do not lead to valid distribution and quantile

estimators.

Although the NNI method has been used for a long time, we cannot ®nd any theoretical

result regarding the validity of NNI in the literature. It is natural to ask the following ques-

tions that are crucial for applications of NNI. First, is a point estimator based on the data

imputed by NNI (which is called an NNI estimator henceforth) an unbiased estimator of

the population parameter? If not, what is the size of the bias? Empirical results (see, e.g.,

Section 4 or Fay 1996) show that the bias of the NNI sample mean is negligible; in

fact, Rancourt, SaÈrndal, and Lee (1994) stated that ``normally, NN imputation yields point

estimates with small or negligible bias, assuming that a linear relationship exists between

the variable of interest y and the concomitant variable x used for nearest neighbor identi-

®cation.'' But this claim was not supported by any theoretical result in general. Second,

what are the size and the form of the variance of an NNI estimator? Clearly, this relates

to variance estimation for NNI estimators, another important task in analyzing survey data.

The purpose of this article is to answer these two questions by providing some theore-

tical results for the biases and variances of NNI estimators such as the sample mean, functions

of sample means of estimated totals, and sample quantiles.

In Section 2, under some regularity conditions on the distribution of the x-variable and

the response mechanism, we show that the bias of the NNI sample mean (and, hence, any

smooth function of sample means) is asymptotically negligible, not only in the case where

variables y and x are linearly related (thus the claim in Rancourt, SaÈrndal, and Lee (1994)

is veri®ed) but also in the case where almost no assumption concerning the model between

y and x is imposed. As a corollary of our result, the empirical distribution and the quantile

estimators based on the data imputed by NNI are asymptotically unbiased for the distribu-

tion of y and its quantiles, which is a superiority of the NNI method over the mean, ratio,

and regression imputation methods. Note that the random hot deck imputation method also
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provides valid distribution and quantile estimators, but the NNI distribution and quantile

estimators are more ef®cient.

In Section 3 we derive an approximate formula for variances of NNI estimators. Using

this formula and some assumptions concerning the model that relates y and x, we can

obtain asymptotically unbiased and consistent variance estimators for NNI estimators.

The variance formula also enables us to compare the ef®ciency of an NNI estimator with

that of another estimator obtained by using mean imputation or random hot deck imputation.

In Section 4 we examine empirically the ®nite sample performances of the NNI sample

mean and our proposed variance estimator, using a population that is a real data set from

the 1988 Current Population Survey (Valliant 1993).

2. The Biases of NNI Estimators

Let P be a ®nite population containing indices 1,. . . ;N, and let S be a sample of size n

selected without replacement from P, according to some sampling plan. For each unit i,

there are characteristics of interest, xi, yi, zi, etc. We assume that the values xi, yi; . . .,

are random variables from a superpopulation, such that fxi; yi; . . .g and fxj; yj; . . .g are

independent for i Þ j. For a given variable y, let a be the response indicator for y (i.e.,

for the ith unit, ai � 1 if yi is a respondent and ai � 0 otherwise). Throughout the article,

we make the following assumption:

Assumption A. The ®nite population is divided into K imputation classes such that

within each imputation class, (xi; yi; ai)'s are iid and P�ai � 1jxi; yi� � P�ai � 1jxi). NNI

is carried out within each imputation class.

Imputation classes are usually constructed using a categorical variable whose values are

observed for all sampled units; for example, if S is a strati®ed sample, then strata or unions

of strata are often used as imputation classes. The assumption on the response probability

P�a � 1jx; y) means that the response indicator a is independent of y, given x. This is

called ``unconfounded response mechanism'' by Lee, Rancourt, and SaÈrndal (1994),

which is required for the validity of many popular imputation methods such as the

mean, ratio, regression, and random hot deck imputation methods. Within an imputation

class, if F is the marginal distribution of x and p � P�a � 1� [ �0; 1�, then

P�x # tja � 1� � P�a � 1jx # t�F�t�=p � F1�t� �2:1�

and

P�x # tja � 0� � P�a � 0jx # t�F�t�=�1 ÿ p� � F0�t� �2:2�

This means that within an imputation class and conditional on ai's, xi's may have two different

distributions according as whether ai � 1 or 0; F1 � F0 � F if ai's are independent of xi's.

In this article, we focus on continuous F1 and F0. When x is discrete, NNI behaves like

random hot deck imputation whose properties are well-known (e.g., Rubin 1987). The pro-

blem when the distribution of x is a mixture of a continuous distribution and a discrete dis-

tribution can be treated using the results in this article and the results for random hot deck

imputation.
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2.1. Simple random sampling with one imputation class

To study the biases of NNI estimators, we start with the simplest case where S is a

simple random sample (srs) and K � 1 (a single imputation class). More complex cases

are considered in Section 2.2.

Without loss of generality we assume that S � f1; . . . ; ng, ai � 1 for 1 # i # r and

ai � 0 for r � 1 # i # n. Under the superpopulation model, assumption A, and the srs

sampling design, conditional on the number of respondents r, f�y1; x1�; . . . ; �yr; xr�g and

f�yr�1; xr�1�; . . . ; �yn; xn�g are independent sets of iid random vectors from two possibly

different distributions.

For r � 1 # j # n, let Äyj denote the value imputed by NNI according to (1.1). Then the

NNI sample mean is

ÅyNNI �
1

n

Xr

i�1

yi �
Xn

i�r�1

Äyi

 !
�

1

n

Xr

i�1

�1 � di�yi �2:3�

where di is the number of times that unit i is used as a donor, 1 # i # r. Note thatPr
i�1 di � n ÿ r � m, the number of missing y-values. Let x�1� # . . . # x�r� denote the

ordered values of x1; . . . ; xr and d�i� be the d-value corresponding to x�i�. For continuous

F1 and F0,

d�i�jr; x1; . . . ; xr , binomial �m;pi� �2:4�

with

pi � F0

x�i�1� � x�i�

2

� �
ÿ F0

x�i� � x�iÿ1�

2

� �
i � 1; . . . ; r; x�0� � ÿ¥ and x�r�1� � �¥, since, conditional on r, x1; . . . ; xr are iid with F1

in (2.1) and xr�1; . . . ; xn are iid with F0 in (2.2).

Before we state a general result for the bias of ÅyNNI, let us consider two examples.

Throughout this article, expectations (conditional or unconditional) are with respect to

sampling and the superpopulation model.

Example 1. Symmetric F1 and F0. Assume that

E�yjx� � a � bx �2:5�

where a and b are unknown parameters, and that F1 and F0 are symmetric about E�x�.

Then ÅyNNI is exactly unbiased, i.e.,

E�ÅyNNIjr� � E�y� �2:6�

We now prove (2.6). Under Model (2.5),

E�y� � a � bE�x�

Under (2.5) and assumption A,

E�ÅyNNIjr� � a �
b

n
E
Xr

i�1

�1 � di�xijr

" #
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since E�diyijr� � E�E�diyijx1; . . . ; xr�jr� � E�diE�yijxi�jr� � E�di�a � bxi�jr�. Hence, it

suf®ces to show that

E
Xr

i�1

dixijr

 !
� E

Xr

i�1

d�i�x�i�jr

 !
� mE�x� �2:7�

Without loss of generality we assume E�x� � 0. Then x�1�; x�2�; . . . have the same joint dis-

tribution as that of ÿx�r�, ÿx�rÿ1�, . . ., given r. For 2 # i # r ÿ 1, by (2.4) and the fact that

F0�ÿt� ÿ F0�ÿs� � F0�s� ÿ F0�t�,

E�d�i�x�i�jr� � mE x�i� F0

x�i�1� � x�i�

2

� �
ÿ F0

x�i� � x�iÿ1�

2

� �� �
jr

� �
� ÿmE x�rÿi�1� F0

ÿx�rÿi� ÿ x�rÿi�1�

2

� �
ÿ F0

ÿx�rÿi�2� ÿ x�rÿi�1�

2

� �h i
jr

n o
� ÿmE x�rÿi�1� F0

x�rÿi�2� � x�rÿi�1�

2

� �
ÿ F0

x�rÿi� � x�rÿi�1�

2

� �� �
jr

� �
Thus,

E
Xrÿ1

i�2

d�i�x�i�jr

 !
� ÿE

Xrÿ1

i�2

d�rÿi�1�x�rÿi�1�jr

 !
� ÿE

Xrÿ1

i�2

d�i�x�i�jr

 !
and this expectation must be 0. Similarly, E�d�1�x�1� � d�r�x�r�jr� � 0. Hence

E
Xr

i�1

d�i�x�i�jr

 !
� 0

This proves (2.7) and thus (2.6) holds.

In survey problems, however, the distribution of xi's is seldom symmetric. If F1 and F0 are

not symmetric, the next example shows that ÅyNNI is biased even when (2.5) holds and F1 � F0.

Example 2. Exponential F1 � F0. Assume linear model (2.5) and that F1 � F0 � F is the

exponential distribution with mean 1. To study the bias of ÅyNNI, we need to evaluate the

expectation on the left-hand side of (2.7). By (2.4),

mÿ1E�d�i�x�i�jr� � E�Bi � Aiÿ1 ÿ Aijr�; i � 2; . . . ; r ÿ 1

where Bi � Die
ÿDi=2eÿx�iÿ1� , Ai � x�i�e

ÿx�i�eÿDi�1=2, and Di � x�i� ÿ x�iÿ1�

Also

mÿ1E�d�1�x�1�jr� � E�x�1� ÿ x�1�e
ÿD2=2jr� � rÿ1

ÿ E�A1jr�

and

mÿ1E�d�r�x�r�jr� � E�x�r�e
ÿ�x�r��x�rÿ1��=2jr� � E�Br � Arÿ1jr�

Hence

E
Xr

i�1

d�i�x�i�jr

 !
�

m

r
� m

Xr

i�2

E�Bijr� �2:8�

Using the fact that D1;D2; . . . ; are independent and all have exponential distributions, we
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obtain that

E�Bijr� �
1

r � 1
1 ÿ

1

�2r ÿ 2i � 3�2

� �
�2:9�

By (2.8) and (2.9) and the fact that E�x� � 1,

E�ÅyNNIjr� ÿ E�y� �
b

n
E
Xr

i�1

d�i�x�i�jr

 !
ÿ mE�x�

" #

�
bm

n

1

r
�
Xr

i�2

E�Bijr� ÿ 1

" #

�
bm

n

r2
� 1

r�r � 1�
ÿ

1

r � 1

Xrÿ2

i�0

1

�2i � 3�2
ÿ 1

" #

� ÿ
bm

n�r � 1�

r ÿ 1

r
�
Xrÿ2

i�0

1

�2i � 3�2

" #
�2:10�

That is, ÅyNNI is biased unless b � 0. If b > 0, ÅyNNI has a negative bias; otherwise ÅyNNI has a

positive bias.

What is the size of the bias of ÅyNNI? By (2.10) and the fact thatP¥
i�0�2i � 3�ÿ2

� p2=8 ÿ 1, we have E�ÅyNNIjr� ÿ E�y� � O�rÿ1
�, i.e., conditional on r,

the bias of ÅyNNI is of order rÿ1. Note that rÿ1 < pÿ1nÿ1 for large n, where

p � P�a � 1). Hence, unconditionally, ÅyNNI is also asymptotically unbiased.

Example 2 shows that ÅyNNI may be biased but the bias is asymptotically negligible in a

very special case. The following result shows that this is true in general.

Theorem 1. Suppose that (i) assumption A holds; (ii) there exist constants M1 < M2 and

C�M1 and M2 may be 6¥) such that the function w�x� � E�yjx� is a monotone function

when x < M1 or x > M2, and jw�x� ÿ w�x0�j # Cjx ÿ x0j when x; x0 [ �M1;M2�; (iii) the

marginal distribution of x has a density, Ejxj3 < ¥, and Ejw�x�j3 < ¥; and (iv) the response

probability P�a � 1jx) satis®es

inf
x[D

P�a � 1jx� > 0; �2:11�

where D is the support of the marginal distribution of x. Then

E�ÅyNNIjr� ÿ E�y� � op�n
ÿ1=2

� �2:12�

From (2.12), ÅyNNI is asymptotically unbiased for the superpopulation mean E�y�. Let ÅY be

the ®nite population mean for y-values. Then (2.12) also implies that ÅyNNI is asympto-

tically unbiased for the ®nite population mean ÅY , since E� ÅY� � E�y�. The result in the

next section shows that the asymptotic variance of ÅyNNI is of order O�nÿ1). Thus, the

asymptotic mean squared error of ÅyNNI is O�nÿ1
� and ÅyNNI � ÅY � Op�n

ÿ1=2
�:

The function w�x� � E�yjx) is unknown and its form is unspeci®ed. w can be a linear function

given by (2.5), or completely unknown (nonparametric), i.e., the NNI method requires no model

between variables x and y. Apart from the moment condition, the condition on the function

w is very weak. It is satis®ed for most practical w functions (e.g., polynomial functions).

Condition (2.11) roughly means that there are some y-respondents for every x-value. It
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is satis®ed in most practical problems and is almost necessary for the validity of any impu-

tation method: intuitively, if P�a � 1jx� � 0 for x in a region D1 Ì D, then we do not have

any information on the y-variable as long as x is in D1.

Proof of Theorem 1. Under assumption A,

E�ÅyNNIjr� ÿ E�y� �
1

n
E
Xr

i�1

diw�xi� ÿ mE�w�x�ja � 0�jr

( )
�2:13�

since E�diyijr� � E�E�diyijx1; . . . ; xr�jr� � E�diw�xi�jr�. For notational simplicity we now

assume x�i� � xi in this proof. Let Ed be the conditional expectation of di's, given r and

x1; . . . ; xr. Then E�diw�xi�jr� � E�Ed�di�w�xi�jr� � E�mpi�xi�jr�. Hence the bias in (2.13)

is the expectation of

m

n

Xr

i�1

piw�xi� ÿ E�w�x�ja � 0�

( )
�

m

n

Xr

i�1

��xi�xi�1�=2

�xi�xiÿ1�=2

�w�xi� ÿ w�t��dF0�t� �2:14�

where xr�1 � ¥; x0 � ÿ¥, and F0 is de®ned by (2.2). It is shown in the Appendix that

E
Xr

i�1

piw�x�i�� ÿ E�w�x�ja � 0�

�����
�����jr

" #
� op�n

ÿ1=2
� �2:15�

which implies that the asymptotic bias in (2.13) is op�n
ÿ1=2

�. This proves result (2.12).

The most commonly used estimators in surveys are functions of several sample means

or estimated totals. Using Theorem 1 and Taylor's expansion, we can prove the following

result.

Corollary 1. Let ÅyNNI be a vector of NNI sample means (as estimators of the

vector ÅY of population means) and let g be a given differentiable function. Then

g�ÅyNNI) is asymptotically unbiased for g� ÅY�.

Let Iyi
�t� be the indicator function of yi. Replacing yi by Iyi

�t� in Theorem 1

(w�x� � P�y # tjx��, we obtain another useful corollary.

Corollary 2. The empirical distribution based on the data imputed by NNI,

ÃF�t� �
1

n

Xr

i�1

Iyi
�t� �

Xn

i�r�1

IÄyi
�t�

" #
is asymptotically unbiased for the ®nite population distribution,

F�t� �
1

N

XN

i�1

Iyi
�t�

Consequently, the NNI sample qth quantile, ÃFÿ1
�q�, is asymptotically unbiased for the

®nite population qth quantile Fÿ1
�q�; 0 < q < 1.

2.2. Strati®ed Sampling with K Imputation Classes

Suppose that P is strati®ed into H strata and nh units are sampled from stratum h according

to some probability sampling plan, h � 1; . . . ;H. We still assume S � f1; . . . ; ng, ai � 1
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for 1 # i # r and ai � 0 for r � 1 # i # n. Under strati®ed sampling, the sample mean in

the case of no nonrespondents is of the form

Åy �
Xn

i�1

wiyi

(a Horvitz-Thompson type estimator), where wi is the survey weight associated with yi so

that Es�Åy ÿ ÅY� � 0 �Es is the expectation with respect to S) and ÅY is the ®nite population

mean. If an srs is sampled from each stratum, for example, then wi � Nh=�nhN�, where Nh

is the number of population units in stratum h.

Results in Section 2.1 (Theorem 1 and Corollaries 1 and 2) still hold under strati®ed

sampling with K imputation classes (see assumption A). A sketched proof is given as fol-

lows. Let Pk denote the kth imputation class, Mk be the size of Pk , and assume (yi; xi) are

iid from a superpopulation such that wk�x� � E�yjx� within Pk . Thus, we have

E� ÅY� �
XK

k�1

Mk

N
E�wk�x��

Let

dij �
1 i is the nearest neighbor of j

0 otherwise

n
�2:16�

Then E�dijwk�x�i��jr� � E�pikwk�x�i��jr�, where pik is the same as pi in (2.4) except that

x�i�'s are the ordered x-values in the kth imputation class and F0 should be replaced by

the distribution of x in the kth imputation class. From (2.15) in the proof of Theorem 1,

E
X

i[Sk ;i#r

pikwk�x�i��jr

" #
ÿ E�wk�x�ja � 0� � op�n

ÿ1=2
k �

where Sk � S Ç Pk, nk is the number of units in Sk, and nk ! ¥ is assumed. Note that

ÅyNNI �
XK

k�1

X
i[Sk ;i#r

wiyi �
X

j[Sk ; j>r

wj Äyj

 !

�
XK

k�1

X
i[Sk ;i#r

wiyi �
X

j[Sk ; j>r

wj

X
i[Sk ;i#r

dijyi

 !

�
XK

k�1

X
i[Sk ;i#r

wi �
X

j[Sk ; j>r

wjdij

 !
yi �2:17�
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Hence

E�ÅyNNIjr� �
XK

k�1

E
X

i[Sk ;i#r

wi �
X

j[Sk ; j>r

wjdij

 !
yijr

" #

�
XK

k�1

X
i[Sk ;i#r

wi

 !
E�wk�x�ja � 1� �

X
j[Sk ; j>r

wj

 !
E

X
i[Sk ;i#r

pikwk�xi�jr

" #( )

�
XK

k�1

X
i[Sk ;i#r

wi

 !
E�wk�x�ja � 1� �

X
j[Sk ; j>r

wj

 !
E�wk�x�ja � 0�

( )
� op�1�

�
XK

k�1

Mk

N
fpkE�wk�x�ja � 1� � �1 ÿ pk�E�wk�x�ja � 0�g � op�1�

�
XK

k�1

Mk

N
E�wk�x�� � op�1�

where pk � P�ai � 1) for ai's in the kth imputation class and the second-last equality

follows from the property of the survey weights wi. Hence ÅyNNI is asymptotically

unbiased.

3. The Variances of NNI Estimators

It is a common practice to report the survey estimates along with their variance estimates

or estimates of coef®cient of variation. Having shown that NNI estimators are asymptoti-

cally unbiased, in this section we assess the variances of NNI estimators and then derive

variance estimators.

3.1. Approximate variance formulas

We ®rst consider ÅyNNI in the simplest case where S is an srs and there is only one imputa-

tion class. We adopt the same notation used in Section 2. Let V�´� and V�´j´� denote the

variance and conditional variance, respectively, with respect to sampling and the super-

population in Assumption A. Using the argument of conditioning, we obtain that

V�ÅyNNI� �
1

n2
E
Xr

i�1

�1 � di�
2V�yijxi�

" #
�

1

n2
V
Xr

i�1

�1 � di�w�xi�

" #
�3:1�

The ®rst term on the right-hand side of (3.1) is simple and its order is O�nÿ1). For assessing

and estimating variances, we need an explicit (approximate) formula for the second term

on the right-hand side of (3.1). As in Section 2, we ®rst consider two examples.

Example 3. Uniform F1 and F0. Assume model (2.5) and that F1 � F0 � F is the uniform

distribution on [0,1]. Then, the second term on the right hand-side of (3.1) is

b2

n
E

1

12
�

2m�r ÿ 3�

n�r � 1��r � 2��r � 3�
�

10m�m ÿ 1� ÿ m�r � 4�

n�r � 1��r � 2��r � 3��r � 4�

� �
�

b2

12n
� O

1

n3

� �
where E is the asymptotic expectation. Details are omitted.
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Example 4. Exponential F1 and F0. Assume model (2.5) and that F1 � F0 � F is the

exponential distribution having mean 1. Then, the second term on the right-hand side of

(3.1) is

b2

n
� O

log n

n2

� �
Details are omitted.

In both examples, the second term on the right-hand side of (3.1) satis®es

1

n2
V
Xr

i�1

�1 � di�w�xi�

" #
�

V�w�x��

n
� o

1

n

� �
�3:2�

Although we conjecture that result (3.2) is true in general, it is dif®cult to prove (3.2) for

general w, F1 and F0. The following result provides an approximate formula for V�ÅyNNI).

Let yn and zn be two sequences of random variables satisfying zn � op�yn�. Assume that

E�yn� and V�yn� exist. Then the asymptotic mean and variance (see, e.g., Akahira and

Takeuchi 1991) of yn � zn are E�yn� and V�yn�, respectively. An asymptotic variance is

often an approximation to the exact variance.

Theorem 2. Assume that V�yjx� < ¥, Ejw�x�j6 < ¥, and that the conditions in Theorem 1

hold. Then the asymptotic variance of ÅyNNI is

1

n2
E
Xr

i�1

�1 � di�
2V�yijxi�

" #
�

V�w�x��

n
�3:3�

The proof is given in the Appendix.

Combining Theorems 1 and 2, we conclude that the asymptotic mean squared error

of ÅyNNI is of order O�nÿ1). This result can be extended to the case of strati®ed

sampling and K imputation classes, the situation described in Section 2.2: using (2.17),

the asymptotic variance of ÅyNNI is

XK

k�1

E
X

i[Sk ;i#r

wi �
X

j[Sk ; j>r

wjdij

 !2

V�yijxi�

" #
�
XK

k�1

V
X
i[Sk

wiwk�xi�

" #
�3:4�

which reduces to that in (3.3) if K � 1 and wi is proportional to nÿ1.

When ÅyNNI is considered as an estimator of the ®nite population mean ÅY , one should

assess the variation of ÅyNNI by V�ÅyNNI ÿ ÅY�. If n=N ! 0 (although nh=Nh != 0 for some

nh's), V�ÅyNNI ÿ ÅY�=V�ÅyNNI� ! 1. The case of n=N not being negligible is more complicated

and will not be discussed here.

The asymptotic variance of g�ÅyNNI) is =g� ÅY�0V=g� ÅY�, where ÅyNNI is a vector of NNI

sample means, V is the asymptotic covariance matrix of ÅyNNI, and =g� ÅY� is the vector

of partial derivatives of the function g evaluated at ÅY, the vector of ®nite population means.

3.2. Variance estimation

There are some methods for estimating variances of NNI estimators (Kovar and

Chen 1994; Rancourt, SaÈrndal, and Lee 1994; Lee, Rancourt and SaÈrndal 1994 and
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1995; Montaquila and Jernigan 1997), but few of them are rigorously justi®ed. Using

a model-based approach, we derive in this section some asymptotically valid variance

estimators for NNI estimators.

From result (3.4), the asymptotic variance of ÅyNNI consists of two terms. We ®rst con-

sider the term involving wk's. If wk's were known, we could use the following textbook

estimator of the variance of
PK

k�1

P
i[Sk

wiwk�xi� (e.g., Cochran 1977):

XK

k�1

XH

h�1

nh

nh ÿ 1

X
i[Sh;k

wiwk�xi� ÿ
1

nh

X
i[Sh;k

wiwk�xi�

" #2

�3:5�

where Sh;k is S restricted to the hth stratum and kth imputation class. When wk's are

unknown, we assume that there exists a model on wk�x� � E�yjx� within imputation class

k. The simplest model is the linear model (2.5), but we may also consider some nonlinear

or nonparametric models. Let Ãwk be the estimators of wk by ®tting one of these models

using data y1; . . . ; yr and x1; . . . ; xr. Under some weak conditions Ãwk�x� is consistent for

wk�x� and substituting wk in (3.5) by Ãwk results in a consistent estimator of the variance

of
PK

k�1

P
i[Sk

wiwk�xi�, the second term in (3.4).

Next, consider the ®rst term in (3.4). If we do not know anything about V�yjx�, then this

term can be estimated by

XK

k�1

X
i[Sk ;i#r

wi �
X

j[Sk ; j>r

wjdij

 !2

�yi ÿ
Ãwk�xi��

2
�3:6�

When there is a model for V�yjx�, we may obtain an improved estimator. A model for

V�yjx� frequently used in surveys is

V�yjx� � j2
kvk�x� in imputation class k �3:7�

where j2
k is unknown but vk�x� is a known function, e.g., vk�x� � jxjd. If (3.7) holds, we

may use the following estimator of the ®rst term in (3.4):

XK

k�1

Ãj2
k

X
i[Sk ;i#r

wi �
X

j[Sk ; j>r

wjdij

 !2

vk�xi� �3:8�

with

Ãj2
k �

X
i[Sk ;i#r

�yi ÿ
Ãwk�xi��

2

� X
i[Sk ;i#r

vk�xi�

Our variance estimator for ÅyNNI is then the sum of the quantities in (3.5) and (3.6) (or (3.5)

and (3.8)). In the case of srs and one imputation class, it reduces to

1

n2

Xr

i�1

�1 � di�
2
�yi ÿ

Ãw�xi��
2
�

1

n�n ÿ 1�

Xn

i�1

Ãw�xi� ÿ
1

n

Xn

j�1

Ãw�xj�

" #2

or

Ãj2

n2

Xr

i�1

�1 � di�
2v�xi� �

1

n�n ÿ 1�

Xn

i�1

Ãw�xi� ÿ
1

n

Xn

j�1

Ãw�xj�

" #2

�3:9�
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Using Taylor's expansion, we can obtain consistent variance estimators for NNI estima-

tors of the form g� ÅyNNI) (see Corollary 1).

4. Some Simulation Results

As a complement to our theory, we present in this section some results from a

limited simulation study. We examine the biases and variances of ÅyNNI and its variance

estimator in the case of srs and one imputation class. The population distribution used

to generate xi's and yi's is a real data set from the 1988 Current Population Survey (Valliant

1993), where x is the hours worked per week and y is the weekly wage. A plot of this

bivariate distribution is given in Figure 1. Some descriptive statistics for x and y are given

as follows:

Both marginal distributions of x and y are skewed and censored at the right end.

We consider n � 100 or 200. The respondents (for y) are generated according to the

response probability function

P�a � 1jx� �
exp�g1 � g2x�

1 � exp�g1 � g2x�
�4:1�

with various g1 and g2. When g2 � 0, respondents are generated with equal probability
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min 1st quartile median mean 3rd quartile max variance skewness N

x 1 38 40 38.32 40 99 125 ÿ0.274 10,841
y 1 192 320 372.3 500 999 59,006 0.881 10,841

Fig. 1. 1998 Current Population Survey



(uniform response); when g2 Þ 0, response rate depends on the value of x (nonuniform

response). When uniform response is considered, the response rate is chosen to be between

0.5 and 0.88. Table 1 provides values of g1, g2, the ranges of P�a � 1jx), and the average

response rate ÅP � E�P�a � 1jx�].

The nonrespondents are imputed by NNI with a single imputation class. The NNI sam-

ple mean ÅyNNI is computed according to (2.3). Unlike the NNI sample mean, the use of

variance estimator in (3.9) requires a model on E�yjx� and V�yjx). We adopt the following

simple but the most commonly used model in sample surveys:

E�yjx� � a � bx and V�yjx� � j2x �4:2�

This is not necessarily the best model for this particular population. In fact, we performed

a regression analysis using all data in the population and found that the weighted

least squares ®tting of model (4.2) yields a � ÿ51:10 (with standard error 4.01),

b � 11:05 (with standard error 0.116), residual standard error � 32:63, and multiple

R-square � 0:45. We also found that a better model for x and y could be obtained

by using log-transformations. Nevertheless, we still use model (4.2) in examining

the empirical property of the variance estimator for ÅyNNI. The variance estimator

for ÅyNNI is then computed according to (3.9) with Ãw�x� � Ãa � Ãbx; v�x� � x, and

Ãj2
�
P

i#r�yi ÿ Ãa ÿ Ãbxi�
2=
P

i#r xi, where Ãa and Ãb are the weighted least squares estimators

of a and b based on the respondents.

Table 2 lists 10,000 Monte Carlo simulation estimates of relative bias (RB) and variance
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Table 1. Parameters in response models

P�a � 1jx� � exp�g1 � g2x�=�1 � exp�g1 � g2x��

Pÿ � minxP�a � 1jx�

P� � maxxP�a � 1jx�

ÅP � average response rate

Model g1 g2 Pÿ P�
ÅP

1 0 ÿ0.02 0.12 0.50 0.32
2 0 ÿ0.01 0.27 0.50 0.41
3 0 0.00 0.50 0.50 0.50
4 0 0.01 0.50 0.73 0.59
5 0 0.02 0.50 0.83 0.68
6 1 ÿ0.03 0.12 0.73 0.46
7 1 ÿ0.02 0.27 0.73 0.56
8 1 ÿ0.01 0.50 0.73 0.65
9 1 0.00 0.73 0.73 0.73

10 1 0.01 0.73 0.88 0.80
11 2 ÿ0.04 0.12 0.88 0.61
12 2 ÿ0.03 0.27 0.88 0.70
13 2 ÿ0.02 0.50 0.88 0.77
14 2 ÿ0.01 0.73 0.88 0.83
15 2 0.00 0.88 0.88 0.88



of ÅyNNI, the RB of the variance estimate ÃV of V�ÅyNNI), and the standard deviation (SD) of
ÃV , for different n and response models under consideration.

For reference purposes, we also obtained the RB and variances of two estimators using

different imputation methods (Table 2). The ®rst one, ÅyR, is obtained by mean imputation,

which is the same as the sample mean of responses only. The second one, ÅyRHD, is obtained

by random hot deck imputation. To achieve a more ef®cient random hot deck imputation,

we divide the sample into three sub-imputation classes, according to whether the value of

the x is < 40, � 40, and > 40, and perform the random imputation within each class. When

a class does not contain any responses, respondents in a neighborhood class are used.

Unlike ÅyNNI, both ÅyR and ÅyRHD are asymptotically biased under the response model (4.1)

when g2 Þ 0 (nonuniform response).

The following is a summary of the results in Table 2.

1. The performance of ÅyNNI is very good. The population mean in this problem is 372.3
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Table 2. Empirical results for NNI, mean and random hot deck imputation

n Model RB(ÅyR) RB(ÅyRHD) RB(ÅyNNI) V�ÅyR) V�ÅyRHD) V�ÅyNNI) RB( ÃV) SD( ÃV)

100 1 ÿ0.050 ÿ0.007 0.000 1,896.4 1,976.4 1,998.2 ÿ0.051 666.1
2 ÿ0.022 ÿ0.003 0.001 1,452.6 1,535.6 1,529.8 ÿ0.012 453.6
3 0.002 0.002 0.002 1,202.4 1,274.6 1,235.8 0.012 319.7
4 0.015 0.003 0.001 993.8 1,055.8 1,031.5 0.019 236.7
5 0.026 0.006 0.001 875.5 934.9 914.1 0.011 191.2
6 ÿ0.060 ÿ0.010 0.000 1,271.3 1,416.8 1,459.9 ÿ0.062 388.9
7 ÿ0.032 ÿ0.006 0.000 1,068.8 1,178.4 1,184.5 ÿ0.040 279.6
8 ÿ0.013 ÿ0.002 0.000 898.1 966.4 972.7 ÿ0.002 212.5
9 0.001 0.001 0.001 781.3 844.9 840.6 0.021 169.9

10 0.008 0.002 0.000 735.4 776.1 760.4 0.018 146.4
11 ÿ0.054 ÿ0.009 0.000 958.6 1,097.8 1,109.7 ÿ0.044 258.1
12 ÿ0.031 ÿ0.005 0.001 828.8 920.9 937.8 ÿ0.024 195.2
13 ÿ0.018 ÿ0.005 ÿ0.001 741.5 816.5 814.5 ÿ0.005 158.2
14 ÿ0.007 ÿ0.002 0.000 719.5 776.6 759.6 ÿ0.025 138.3
15 ÿ0.001 ÿ0.001 ÿ0.001 655.5 684.8 682.3 0.009 122.4

200 1 ÿ0.053 ÿ0.010 ÿ0.001 922.2 956.4 1,003.2 ÿ0.044 236.9
2 ÿ0.023 ÿ0.005 0.000 734.3 760.6 765.1 ÿ0.006 156.3
3 0.000 0.001 0.001 587.5 621.3 612.2 0.021 110.8
4 0.016 0.004 0.000 485.5 516.4 513.4 0.032 83.7
5 0.026 0.006 0.001 427.9 458.7 442.6 0.046 66.8
6 ÿ0.059 ÿ0.010 0.001 636.2 701.9 711.5 ÿ0.029 138.1
7 ÿ0.033 ÿ0.006 0.001 524.3 580.1 585.7 ÿ0.024 98.2
8 ÿ0.013 ÿ0.003 0.000 453.4 482.5 493.7 ÿ0.012 74.8
9 ÿ0.001 ÿ0.001 ÿ0.001 386.5 419.0 407.1 0.050 59.9

10 0.007 0.000 ÿ0.001 363.9 384.1 373.7 0.034 51.2
11 ÿ0.054 ÿ0.009 0.001 469.0 531.7 556.4 ÿ0.039 91.9
12 ÿ0.031 ÿ0.005 0.002 424.4 473.1 483.4 ÿ0.048 69.6
13 ÿ0.016 ÿ0.003 0.001 381.9 410.9 411.1 ÿ0.013 56.5
14 ÿ0.005 0.000 0.001 352.1 374.0 372.4 ÿ0.004 48.3
15 0.001 0.001 0.001 334.3 347.7 343.1 0.006 43.8

n � sample size, ÅY � 372:3



and the RB of ÅyNNI is within 0:2% range. Thus, the bias of ÅyNNI is negligible regard-

less of the response rate and of whether the response is uniform. This con®rms our

theoretical result. The variance of ÅyNNI increases as the number of nonrespondents

increases.

2. Although model (4.2) is not perfect, the performance of the variance estimator ÃV for

ÅyNNI is still good. Its relative bias ranges from ÿ6:2% to 2.1% in the case of n � 100

and ÿ4:4% to 5.0% in the case of n � 200. The standard deviation of ÃV increases as

the number of nonrespondents increases.

3. V�ÅyNNI) is about the same as that of V�ÅyRHD) and is larger than V�ÅyR). However, ÅyR

has a small but nonnegligible bias when g2 Þ 0. For example, under model 1, the RB

of ÅyR is ÿ0:05 which is small but nonnegligible compared with the relative stability

of ÅyR �
����������
V�ÅyR

p
= ÅY � 0:117 (n � 100) or 0.082 (n � 200).

Appendix

Proof of (2.15)

To study the expectations of the integrals in (2.14), we consider the following four cases.

Case 1: the integration limits of the integral in (2.14) are within the interval [M1;M2].

When M1 # �xi � xiÿ1�=2 and (xi � xi�1�=2 # M2,

��xi�xi�1�=2

�xi�xiÿ1�=2

�w�xi� ÿ w�t��dF0�t�

�������
������� # C�xi�1 ÿ xi��F0�xi�1� ÿ F0�xi��

� C�xi ÿ xiÿ1��F0�xi� ÿ F0�xiÿ1��

Let f0 and f1 be the densities of F0 and F1, respectively. Under condition (2.11), it can be

shown that f0�t�=f1�t� # c0 for a constant c0 > 0. Then jF0�s� ÿ F0�t�j # c0jF1�s� ÿ F1�t�j.

Note thatXrÿ1

i�1

Ef�xi�1 ÿ xi��F1�xi�1� ÿ F1�xi��jrg

� r�r ÿ 1�

�
t<s

�s ÿ t��F1�s� ÿ F1�t���1 � F1�t� ÿ F1�s��
rÿ2dF1�t�dF1�s�

� r

�
t�F1�t��

rÿ1
�1 ÿ F1�t��dF1�t� ÿ r

�
tF1�t��1 ÿ F1�t��

rÿ1dF1�t�

�

�
t�F1�t��

rdF1�t� ÿ

�
t�1 ÿ F1�t��

rdF1�t�

which is of order o�rÿ1=2) under the ®nite third order moment condition on x. Also,

r1=2 < pÿ1=2nÿ1=2 for large n, where p � P�a � 1). Hence, the sum of the expectations of

the integrals in (2.14) with integration limits within [ÿM1;M2] is of order op�n
ÿ1=2).

Case 2: the integration limits of the integral in (2.14) are ®nite and outside [M1;M2]. With-

out loss of generality, assume w�t� is an increasing function when t > M2. When
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(xi � xiÿ1�=2 > M2 and (xi � xi�1�=2 < ¥��xi�xi�1�=2

�xi�xiÿ1�=2

�w�xi� ÿ w�t��dF0�t�

�������
������� # �w�xi�1� ÿ w�xi���F0�xi�1� ÿ F0�xi��

� �w�xi� ÿ w�xiÿ1���F0�xi� ÿ F0�xiÿ1��

# c0�w�xi�1� ÿ w�xi���F1�xi�1� ÿ F1�xi��

� c0�w�xi� ÿ w�xiÿ1���F1�xi� ÿ F1�xiÿ1��

Let Äw�t� � max�w�t�;M2]. Note thatXrÿ1

i�1

E � Äw�xi�1� ÿ
Äw�xi���F1�xi�1� ÿ F1�xi��jr

� 	
� r�r ÿ 1�

�
t<s

� Äw�s� ÿ Äw�t���F1�s� ÿ F1�t���1 � F1�t� ÿ F1�s��
rÿ2dF1�t�dF1�s�

� r

�
Äw�t��F1�t��

rÿ1
�1 ÿ F1�t��dF1�t� ÿ r

�
Äw�t�F1�t��1 ÿ F1�t��

rÿ1dF1�t��

�

�
Äw�t��F1�t��

rdF1�t� ÿ

�
Äw�t��1 ÿ F1�t��

rdF1�t�

which is of order o�rÿ1=2) under the ®nite third order moment condition on w�x�. Hence,

the sum of the expectations of the integrals in (2.14) with (xi � xiÿ1�=2 > M2

and (xi � xi�1�=2 < ¥ is of order op�n
ÿ1=2). Similarly, the sum of the expectations of the inte-

grals in (2.14) with (xi � xiÿ1�=2 > ÿ¥ and (xi � xi�1�=2 < M1 is also of order op�n
ÿ1=2).

Case 3: the integration limits of the integral in (2.14) are ®nite and exactly one of them is

inside [M1;M2]. For t in the interval containing M2,

jw�t� ÿ w�xi�j # CjM2 ÿ xiÿ1j � jw�xi�1� ÿ w�M2�j # 2CM2 � jw�xi�1� ÿ w�M2�j

Since E�pi� � O�nÿ1
� and E�pijw�xi�1� ÿ w�M2�j� � o�nÿ1=2

� (which can be shown using

the same argument used in (2)), the expectation of the integral in (2.14) with integration

interval containing M2 is of order op�n
ÿ1=2

�. Similarly, the expectation of the integral in

(2.14) with integration interval containing M1 is also of order op�n
ÿ1=2

�.

Case 4: one of the integration limits of the integral in (2.14) is not ®nite. Consider�¥
�xrÿ1�xr�=2

�w�xr� ÿ w�t��dF0�t� �A:1�

Assume P�x > M2� > 0 (otherwise, it is not necessary to consider the integral with upper

integration limit ¥). Then P�xrÿ1 > M2� # 1 ÿ r�P�x < M2��
rÿ1. Consequently, we can

assume xrÿ1 > M2 because the integration from xrÿ1 to M2 is exponentially small. Thus,

the integral in (A.1) is bounded by�¥
xrÿ1

�w�t� ÿ w�M2��dF0�t� # �1 ÿ F0�xrÿ1��
1=2

�¥
xrÿ1

�w�t� ÿ w�M2��
2dF0�t�

8<:
9=;

1=2
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Its expectation is of order op�n
ÿ1=2) under the moment assumptions on x and w�x�.

Similarly, the expectation of the integral��x1�x2�=2

ÿ¥

�w�x1� ÿ w�t��dF0�t�

is also of order op�n
ÿ1=2

�.

Combining (1)±(4), we obtain (2.15).

Proof of Theorem 2

From (3.1), it suf®ces to show that the asymptotic variance of nÿ1Pr
i�1�1 � di�w�xi� is the

second term in (3.3). Let zi � w�xi� ÿ E�w�x�ja � 0�. For simplicity we assume x�i� � xi.

Note that

V
1

n

Xr

i�1

�1 � di�w�xi�

" #
� V

1

n

Xr

i�1

�1 � di�zi

" #

� V Ed

1

n

Xr

i�1

�1 � di�zi

" #( )
� E Vd

1

n

Xr

i�1

�1 � di�zi

" #( )
�A:2�

where Ed and Vd are the conditional expectation and variance, given x1; . . . ; xr, in addition

to conditioning on r, as always. By (2.15) and the fact that E�zja � 0� � 0,Xr

i�1

pizi � op�n
ÿ1=2

� �A:3�

Then

Ed

1

n

Xr

i�1

�1 � di�zi

" #
�

1

n

Xr

i�1

zi � op�n
ÿ3=2

�

and its asymptotic variance is

V
1

n

Xr

i�1

zi

 !
�

pV�w�x�ja � 1� � p�1 ÿ p��m1 ÿ m0�
2

n
� op

1

n

� �
�A:4�

where mv � E�w�x�ja � v�; v � 0; 1. Let dij be the indicator de®ned in (2.16).
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Then di �
Pn

j�r�1 dij and
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where the second equality holds because dij and dik are conditionally independent and have

the same distribution, and the third equality holds because d2
ij � dij and dijdlj � 0 for i Þ l

(there is no tied xi's). Then,
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(by (A.3)) and its asymptotic mean is
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where the ®rst equality follows from the proof of Theorem 1. From (A.2), the asymptotic

variance of nÿ1Pr
i�1�1 � di�w�xi� is the sum of the quantities in (A.4) and (A.5). The

result follows from the fact that

V�w�x�� � EfV�w�x�ja�g � VfE�w�x�ja�g

� pV�w�x�ja � 1� � �1 ÿ p�V�w�x�ja � 0� � p�1 ÿ p��m1 ÿ m0�
2
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