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Abstract

A mixture of Gaussian mixture models is proposed to deal with the identification of survey respondents providing values in a
wrong unity measure. The “two-level” mixture model allows effective classification in a non-normal setting. The natural constraints
of the problem make the model identifiable. The effectiveness of the proposal is shown by simulation studies and an application to
the 1997 Italian Labour Cost Survey.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The assumption of data from a Gaussian distribution is sometimes too restrictive. Different techniques can be used to
relax this hypothesis. Among them, the use of finite mixture models is interesting. Marron and Wand (1992) show that a
finite Gaussian mixture can reasonably approximate a wide class of probability distributions. As far as the classification
problems are concerned, it can be useful to consider groups as components of a finite mixture and, within each group in
turn, to model data as a Gaussian mixture, thus obtaining a mixture of mixture models. The idea of a two-level mixture
model is appealing because it allows to model non-Gaussian distribution within groups, i.e., the different components
of the finite mixture (first level). The drawback of this approach is that identifiability problems may arise. Willse and
Boik (1999) discuss this issue underlining that, under the imposition of appropriate constraints, the mixture of mixtures
model is identifiable. Hastie and Tibshirani (1996) use a two-level mixture model for discriminant analysis. However,
their approach has not any identifiability problem because membership function is known. An important application
field where constraints may be imposed, making the mixture of mixture models identifiable, is that illustrated in
Di Zio et al. (2005). The problem is the localization of unity measure error in data, i.e., the identification of survey
respondents that provide values in a wrong unity measure. It is typical of the Official Statistics production, and it is
generally treated in the data editing phase. This phase consists of localizing non-sampling errors in data (editing) and
treating them, often substituting each value classified as erroneous with a more plausible one (imputation). Data editing
is important both in terms of data quality and survey cost. Thus, techniques introduced to clean data are essentially
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required to balance the trade off between these aspects (Granquist, 1995). Recently, with the advances in computers
capabilities, the automatic editing approach, based on the Fellegi-Holt paradigm (Fellegi and Holt, 1976; De Waal,
2003), has increased its popularity. While this approach is appropriate for dealing with random errors, it requires data
free of systematic errors. A particular systematic error, that frequently appears in surveys collecting numerical data,
is the unity measure error causing the “true” value to be multiplied by a constant factor (e.g., 100 or 1000). This
is due to the misunderstanding, by some respondents, of the unity measure, e.g., a respondent is request to report
the amount of money in thousands but he expresses it (erroneously) in millions. This error highly affects both data
accuracy (bias) and editing and imputation costs. In fact, all the automatic data editing process cannot be performed
satisfactorily if this error is not removed preliminarily. In the National Statistical Institutes, this error is generally
treated through ad hoc poorly automated procedures, using mainly graphical analysis and ratio edits, i.e., bounds on
ratios between pairs of variables. The limit is both in terms of quality and cost. Quality is limited by the fact that
the traditional approaches may take into account no more than a pairwise relationship between variables. Costs are
essentially influenced by the fact that for each survey a new ad hoc procedure must be set up. To overcome these
limits, Di Zio et al. (2005) defined the unity measure error as a clustering problem, and proposed an approach based
on mixture modelling. They assume that, in the log scale, error-free data follow a Gaussian distribution. Although they
show that this approach performs quite satisfactorily also in the presence of non-Gaussian data, its behaviour is expected
to be poorer when data are far from the Gaussianity and clusters highly overlap each other. In this paper, the method
proposed in Di Zio et al. (2005) is generalized by modelling the distribution of error-free data through a mixture of
Gaussians. The resulting model becomes a mixture of Gaussian mixtures, hereafter mixture of mixtures unity measure
error (UME).

The plan of the paper is the following. In Section 2, the model is formalized. In Section 3, the identifiability issue
is discussed. In Section 4, an EM algorithm is introduced to compute the maximum likelihood estimates of model
parameters. Effectiveness of the proposal is shown in Section 5 through simulation experiments, and in Section 6 by
an application to a subset of real data from the 1997 Italian Labour Cost Survey (LCS). Some final conclusions are
drawn in Section 7.

2. The model

According to the approach of Di Zio et al. (2005), error-free data are considered as independent realizations of a

random J-vector X̃ =
(
X̃1, . . . , X̃J

)′
with probability density function (p.d.f.) g̃0(x). The unity measure error acts on

each variable X̃j (j =1, . . . , J ) through the transformation X̃j → c̃ X̃j where c̃ is a constant factor (the generalization
to the case of different constant factors for different variables is straightforward). In presence of non-negative-valued
variables (a typical situation in economic surveys), it may be useful to work in the logarithmic scale. Actually, if we

let X = log
(

X̃
)

, and denote by g0(x) the p.d.f. associated with X, the unity measure error can be represented through

the transformation Xj → Xj + c where c = log(c̃). For each subset of indices l = {j1, . . . , jk} ⊆ {1, . . . , J }, the
observations affected by a unity measure error in the variables Xl = (

Xj1 , . . . , Xjk

)′ define a cluster l similar in shape
to the cluster of error-free units, but with a different location. More precisely, the units of cluster l can be thought of as
generated by the density gl(x) = g0 (x − cl ) where cl is a vector whose components clj (j = 1, . . . , J ) are equal to c
if j ∈ l, and zero otherwise. In this framework, data can be modelled through the mixture density

f (x) =
L∑

l=1

plgl(x), (1)

where L is the number of the distinct error patterns. For each observation xi (i =1, . . . , n), the probability of belonging
to a particular cluster can be computed by

Pr (l|xi ) = plgl (xi )∑L
l=1 plgl (xi )

. (2)
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Thus, if the probability Pr (l|xi ) can be estimated for all the groups l, the observation xi can be assigned to the cluster
(i.e., error pattern) with the highest estimated probability.

In Di Zio et al. (2005) the density g0 of the error-free data is taken as J-variate normal with parameters (μ, �), so that
each component gl is obtained from g0 simply by substituting μ with μ + cl . In the proposed approach, the normality
assumption is no longer required. This is accomplished by assuming that each density gl is, in turn, expressed as a
mixture of M Gaussians

gl(x) =
M∑

m=1

qmh
(
x − cl; μm, �m

)
, (3)

where h
(·; μm, �m

)
is a J-variate normal density with mean vector μm and covariance matrix �m. From Eqs. (1) and

(3), it follows that the density of X can be written as

f (x) =
L∑

l=1

M∑
m=1

plqmh
(
x − cl; μm, �m

) =
L∑

l=1

M∑
m=1

plqmh
(
x; μm + cl , �m

)
, (4)

where

h
(
x; μm + cl , �m

) = (2�)−J/2|�m|−1/2

× exp
[
− 1

2

(
x − μm − cl

)′
�−1

m

(
x − μm − cl

)]
.

Formula (4) is the density of a mixture of L × M Gaussian distributions with mean vectors suitably constrained, and
global mixing proportions given by the products of the first- and second-level mixing proportions. The multiplicative
structure of the mixing proportions is a consequence of the nature of the UME problem. In fact, apart the location
parameters, the second-level mixture is the same for all the first-level groups. Note that further constraints can be
introduced by assuming that all the M components have the same covariance matrix, �m = � for each m = 1, . . . , M

(homoscedastic model). Constraints have an impact also on the number of parameters to be estimated. Actually, only
one second-level mixture has to be estimated, (i.e., M mixing proportions qm, M mean vectors μm, and M covariance
matrices �m). Nevertheless, the number of error patterns and hence the number of first-level mixing proportions pl

increases exponentially as the number p of variables affected by UME increases. This aspect limits the applicability of
the model when the number of variables is high with respect to the number of observations. This forces the researcher
to work on subsets of variables separately rather than on all the variables simultaneously. The double level of mixtures
reflects the two goals of this method: the first represents the classification, the second the density estimation. This
approach has the advantage to be mathematically tractable and, at the same time, quite flexible to deal with data far
from normality. A discussion on mixture of mixtures modelling is in McLachlan and Peel (2000).

3. Identifiability

In this section, the identifiability of the model (4) is investigated. We remind that, if � is the parameter space andI=
{f (x; �), � ∈ �} a parametric family of probability distributions over �, thenI is said to be identifiable if the mapping
� −→ f (·; �) is a one to one map of � onto I. In the context of finite mixture models, uniqueness of representation is
required only up to relabelling of group indices. Thus, if we let �= (�1, . . . , �K)′, and �={�1, . . . , �K}, identifiability

of the mixture model f (x; �, �) = ∑K
k=1 �kg (x; �k) means that for any p.d.f. f̃

(
x; �̃, �̃

)
= ∑K̃

k=1 �̃kg
(

x; �̃k

)
, the

equality f̃ ≡ f implies K̃=K and the existence of a component relabelling such that �̃k =�k and �̃k =�k, k=1, . . . , K .
Identifiability has been proved for some important class of distribution families such as gamma or multivariate Gaussian
(see Teicher, 1963; Yakowitz and Spragins, 1968). In absence of any constraint, it is easy to show that in general a
mixture of mixtures is not identifiable. This is essentially due to the possibility of interchanging component labels
between the two levels of the model. In our case, the particular structure of the UME model does not allow such
interchange. In particular it will be shown that the model in Eq. (4) is identifiable provided that all of the Gaussian
densities h

(
x; μm + cl , �m

)
are distinct. Henceforth, a � b [a 	 b] denotes that the components of the vector
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a − b are all non-negative (but at least one positive), and ‖ · ‖1 denotes the �1 norm, i.e., ‖a‖1 = ∑J
j=1

∣∣aj

∣∣ where
a = (a1, a2, . . . , aJ )′.

Result 1. Let N ={�lm; l = 1, . . . , L, m = 1, . . . , M} be a finite set of distinct vectors such that �lm = al + bm, where
A = {al; l = 1, . . . , L} and B = {bm; m = 1, . . . , M} are sets of vectors such that al − a1 � 0, (l = 1, . . . , L). If there

exists a relabelling of the elements of N = {�̃st ; s = 1, . . . , L, t = 1, . . . , M} and a set B̃ =
{

b̃t ; t = 1, . . . , M
}

, such

that it is possible to write �̃st = as + b̃t , then B̃ = B and the equality �lm = �̃st , i.e.,

al + bm = as + b̃t , (5)

implies l = s and bm = b̃t .

Proof. For the proof of the statement it is sufficient to show that B = B̃. In this case we can find an invertible function
r(·) such that b̃t = br(t). In fact, the elements of B and B̃ are distinct since the elements of N are. The equality �lm = �̃st

implies

�lm = �̃st = as + b̃t = as + br(t) = �sr(t). (6)

By the distinctness of the elements of N, it follows that (l, m) = (s, r(t)), i.e., l = s and bm = b̃t .
In order to prove that B = B̃, we consider a vector �min such that �− �min � 0 for each � ∈ N. For instance, by using

the following notation for the vectors �min = (
�1;min, . . . , �J ;min

)
and �lm = (

�1;lm, . . . , �J ;lm
)
, �min can be chosen as

the vector whose components are defined by

�j ;min = min
lm

�j ;lm j = 1, . . . , J .

Let �l′m′ be the nearest vector to �min in N, that is,

�l′m′ = argmin
�∈N

‖� − �min‖1. (7)

If there are two or more vectors fulfilling Eq. (7), we choose the one with the lowest second index. Noting that for any
two vectors a, b � 0 we have ‖a + b‖1 = ‖a‖1 + ‖b‖1, and also that �1m′ − �min � 0, it follows

‖�l′m′ − �min‖1 = ‖al′ − a1 + a1 + bm′ − �min‖1

= ‖al′ − a1‖1 + ‖�1m′ − �min‖1

�‖�1m′ − �min‖1, (8)

where the equality holds if and only if ‖al′ − a1‖1 = 0. By construction of �l′m′ , we conclude that l′ = 1.
Let �̃s′t ′ be �1m′ relabelled. With the same arguments, it is possible to show that s′ = 1 and

�1m′ = �̃1t ′ ⇔ bm′ = b̃t ′ .

In this way, it is proved that B and B̃ must have at least one element in common. The procedure can be repeated by
excluding from N the elements �lm′ for l = 1, 2, . . . , L, thus showing that B and B̃ must have another element in
common, say bm′′ = b̃t ′′ . Of course, bm′′ �= bm′ , otherwise �1m′′ = �1m′ and this is not possible because the elements
of N are all distinct. It follows that B and B̃ must have at least two elements in common. By iterating the procedure
M − 2 times again, it is proved that B = B̃. �

Result 1 allows to give sufficient conditions for the identification of model in Formula (4).

Result 2. Let

f (x) =
L∑

l=1

M∑
m=1

plqmh
(
x; cl + μm, �m

)
,
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and

f (x) =
L∑

s=1

M̃∑
t=1

p̃s q̃th
(

x; cs + μ̃t , �̃t

)

be two different parametrizations of the same mixture of mixtures UME model. Furthermore, let us suppose that
cl − c1 � 0, l = 1, . . . , L.

If (l, m) �= (l1, m1) implies∥∥(
cl + μm

) − (
cl1 + μm1

)∥∥2
2 + ∥∥�m − �m1

∥∥2
2 �= 0, (9)

where ‖ · ‖2 is the Froebenius norm, then there exists a relabelling such that

pl = p̃l, qm = q̃m, μm = μ̃m, �m = �̃m.

Proof. Let us denote

al = (
c′
l , 0′)′

, bm = (
μ′

m, vec(�m)′
)′

and

b̃t =
(

μ̃′
t , vec

(
�̃t

)′)′
,

where the null vector 0 has the same number of components as vec (�m). Let us consider the L × M vectors

�lm = al + bm

which are distinct because of condition (9), and the L × M̃ vectors

�̃st = as + b̃t .

The identifiability of Gaussian mixture guarantees that L×M =L× M̃ , i.e., M = M̃ , and also that for each pair (l, m)

there exists a pair (s, t) such that

plqm = p̃s q̃t , �lm = �̃st .

By Result 1, the second of the previous equalities implies l = s and bm = b̃t . Hence, by a suitable relabelling,

plqm = p̃l q̃m, μm = μ̃m, �m = �̃m

which implies

pl = p̃l, qm = q̃m

by the uniqueness of the independence model. �

A sufficient condition for (9) to be fulfilled is that all of the covariance matrices �m (m = 1, . . . , M) are distinct.
It is worth mentioning this case because, in situations where the distribution of the error-free data is symmetric but
not normal, it can be managed by using a mixture of Gaussians having the same location but different covariance
matrices. The identifiability of mixture of mixtures UME model has been proved under the assumption that the known
vectors c1, c2, . . . , cL are such that cl − c1 has non-negative components for each l. In the present context, where the
vectors cl are associated with unity measure error patterns, this assumption seems quite reasonable. For instance, for
K = 2, the error patterns corresponding to the vectors c1 = (− log(1000), − log(1000))′, c2 = (log(1000), 0)′, c3 =
(0, log(1000))′, c4 = (log(1000), log(1000))′, c5 = (− log(1000), 0)′, c6 = (0, − log(1000))′, c7 = (0, 0)′, satisfy the
sufficient conditions for the identifiability. Nevertheless, if we exclude the error pattern given by the vector c1, then
the sufficient conditions are no longer fulfilled. However, the model is still identified since the sufficient conditions
can be recovered by multiplying the variables by −1. The critical situation is when neither c1 nor c4 are present.
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This situation seems to be quite unrealistic in that it would correspond to the possibility a specific unity measure error
occurs on each of the two variables but not on both simultaneously.An important remark is that Results 1 and 2 are based
on the distinctness of all the Gaussian densities appearing in the model definition. In the following example, the role
played by the distinctness of the mixture densities in ensuring identifiability is shown. Let us consider a homoscedastic
mixture of mixtures model with density

f (x) = p
[
qh

(
x; μ1, �

) + (1 − q)h
(
x; μ2, �

)]
+ (1 − p)

[
qh

(
x; μ1 + c, �

) + (1 − q)h
(
x; μ2 + c, �

)]
,

with 0�p�1, 0�q �1 and c a known vector, and let us suppose that μ2 = μ1 + c. The second density of the
first group, and the first density of the second are the same. Thus, the hypothesis of distinctness is not fulfilled. In
fact, this model can be viewed as a homoscedastic Gaussian mixture of three components with mixing proportions
�1 =pq, �2 =p(1 − q)+ (1 −p)q, �3 = (1 −p)(1 − q), and mean vectors μ1, μ1 + c, μ1 + 2c. Since the weights �1,
�2, �3 are symmetric functions of p and q, the same model can be obtained by interchanging p and q, thus the model
is not identifiable.

4. Maximum likelihood estimates

By assuming the independence of observations, we can write the log-likelihood of the whole sample as

�(ϑ) =
n∑

i=1

log f (xi ) =
n∑

i=1

log

{
L∑

l=1

M∑
m=1

plqmhilm

}
, (10)

where ϑ is the whole set of parameters to be estimated and hilm = h
(
xi; μm + cl , �m

)
. To compute the maximum

likelihood estimates of model parameters, we note that (see Hathaway, 1986) the maximization of (10) is equivalent to
the maximization of the “fuzzy” function

�f (ϑ) =
n∑

i=1

L∑
l=1

M∑
m=1

uilm log (plqmhilm) −
n∑

i=1

L∑
l=1

M∑
m=1

uilm log (uilm) , (11)

where the uilm’s are non-negative and such that
∑

lm uilm =1 for i=1, 2, . . . , n. To maximize �f we adopt a coordinate
ascent method, where in each step the objective function is maximized with respect to a subset of parameters given the
current values of the others. In this way each parameter, or subset of parameters, is in turn updated and the algorithm
increases the value of the objective function at each step. The algorithm stops when the function increment in a particular
step is lower than a given threshold. The fundamental steps of our algorithm are the following:

(a) Update of uilm: It can be easily shown that (11) has a maximum with respect to the u’s when

uilm = plqmhilm∑
lm plqmhilm

. (12)

(b) Update of pl : By rewriting (11) as

�f (ϑ) =
∑
ilm

uilm log (pl) + const., (13)

where const. indicates a term that does not depend on the p’s, we deduce that (11) is maximized with respect to the p’s
when

pl = 1

n

∑
im

uilm. (14)

(c) Update of qm: As in the previous step, it can be shown that (11) obtains a maximum with respect to the q’s when

qm = 1

n

∑
il

uilm. (15)
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(d) Update of μm: First, we rewrite (11) as

�f (ϑ) =
∑
ilm

uilm

[
−1

2

(
xi − μm − cl

)′
�−1

m

(
xi − μm − cl

)] + const., (16)

where const. indicates a term independent of the μ’s. Then it simply follows that

μm = 1∑
il uilm

∑
il

uilm (xi − cl ) . (17)

(e) Update of �m: By rewriting (11) as

�f (ϑ) = −1

2

∑
ilm

uilm

[
log

(
|�m| + d′

ilm�−1
m dilm

)]
+ const., (18)

where const. indicates a term independent of the �m’s and dilm = xi − μm − cl , we deduce that the update of �m is

�m = 1∑
il uilm

∑
il

uilmdilmd′
ilm, (19)

while in the homoscedastic case, i.e., � = �m, we have

� = 1

n

∑
ilm

uilmdilmd′
ilm. (20)

By iterating the above described steps we obtain a monotone algorithm which can be easily shown to be of ECM type
(Meng and Rubin, 1993).

In practical applications, it turns out that a crucial role is played by the choice of the starting points, as usual in the
EM algorithms (see Biernacki et al., 2003). We developed an initialization strategy based on a constrained version of
the K-means clustering technique that should approximate the model, i.e., the L × M centroids are constrained to be
of the form μm + cl . More in detail, the algorithm consists of two distinct phases corresponding to the two levels of
the mixture model. In the first phase, the first-level groups (i.e., those corresponding to error patterns) are determined
subject to the constraint that their centroids are obtained from the centroid of error-free data by translation for the
appropriate vector cl l = 1, . . . , L. This is accomplished through the following simple iterative scheme:

(1) use the overall sample-median vector as initial guess of the error-free data centroid p0
0;

(2) compute the centroid of group l by adding to p0
0 the corresponding translation vector: p0

l = p0
0 + cl ;

(3) assign each unit to the group with the nearest centroid;
(4) translate each unit in cluster l by the corresponding vector −cl ;
(5) determine the new centroid p1

0 of the error-free units as the overall sample mean vector computed on the translated
data.

Iterate steps 2–5 until no change in units assignments is made in two successive iterations. Once the data are assigned
to first-level groups, each unit in cluster l is translated as in step (4) by −cl and the second stage of the initialization
procedure consists of an ordinary K-means algorithm corresponding to the specified number of second-level clusters.
The sample mean vectors and variance–covariance matrices of the second-level clusters are then taken as initial values
of the model parameters.

5. Simulation experiments

In order to compare the simple Gaussian mixture model and the mixture of homoscedastic and heteroscedastic
Gaussian mixture models, three different groups of experiments have been carried out. The elements varying in the
experiments are the generating probability distribution, the sample size, and the translation vectors. In the first group
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Table 1
Results for the experiments where the data distribution is (1) bivariate normal distribution (S0), (2) bivariate T distribution with 1 d.f. (T 0), and (3)
bivariate skew-T distribution (T 1), the translation constant is based on log(1000) and sample size n = 1000

Data distribution S0 T 0 T 1
benchmark 985.18 975.65 972.57

mixt Correct Class 985.08 973.20 954.37
Freq BIC 100 0 0

homo2 Correct Class 985.14 971.35 952.32
Freq BIC 0 0 0

homo3 Correct Class 984.92 970.00 957.98
Freq BIC 0 2 0

homo4 Correct Class 984.76 968.65 958.23
Freq BIC 0 6 3

homo5 Correct Class 983.90 967.20 958.214
Freq BIC 0 20 32

homo6 Correct Class 983.16 964.72 956.76
Freq BIC 0 72 65

hete2 Correct Class 985.02 975.21 968.22
Freq BIC 100 0 0

hete3 Correct Class 985.02 975.09 969.43
Freq BIC 0 63 0

hete4 Correct Class 984.92 974.53 969.39
Freq BIC 0 25 57

hete5 Correct Class 984.18 973.93 969.76
Freq BIC 0 10 27

hete6 Correct Class 983.12 973.72 969.72
Freq BIC 0 2 16

of experiments, a sample of 1000 observations is drawn from a four component mixtures, respectively of: (1) bivariate
normal distributions (S0), (2) bivariate T distributions with 1 d.f. (T 0), and (3) bivariate skew-T distributions (T 1) (see
for detailsAzzalini and Capitanio, 2003). The location parameter is (−2.5, −2.6) for all the distributions, the covariance
matrix �0 has components �0

11 = 3.040, �0
12 = 2.698 and �0

22 = 2.880 for S0 and T 0, while T 1 is characterized by the
dispersion matrix � with components 	11 = 7.600, 	12 = 6.745, 	22 = 7.200 and shape parameter vector 
 = (20, 0).
For the meaning of dispersion matrix and shape parameter see Azzalini and Capitanio (2003). The mixture components
correspond to the four different translation vectors (0, 0)′, (0, log(1000))′, (log(1000), 0)′, (log(1000), log(1000))′,
with mixing proportions �1 = 0.5, �2 = 0.1, �3 = 0.1, �4 = 0.3. For each sample, the simple Gaussian mixture, the
homoscedastic and the heteroscedastic mixture of mixture models are estimated. The corresponding classification is
computed also varying the number of the second-level mixture components. In order to choose among the models
in the same family, the corresponding BIC is computed (see Keribin, 2000). As benchmark, the optimal classifica-
tion, i.e., the classification obtained by using the true generating mixture distribution, is also computed. This process
is iterated 100 times. To evaluate the performance of the different models, the following quantities are computed
(Table 1): (a) the average number of correct classifications (‘Correct Class’), and (b) the frequency that a certain model
is chosen according to BIC (‘Freq BIC’). The homoscedastic mixture of two-component mixture model is indicated
with ‘homo2’, ‘hete2’ is the heteroscedastic mixture of two-component mixture model, and analogously the others.
Note that the frequencies sum to 100 within the two groups of models, i.e., simple mixture plus homoscedastic, and
heteroscedastic. The second group of experiments is the same as the first, apart that the sample size is 500. The results
are shown in Table 2.

In the third group of experiments, samples of size 1000 are drawn from a bivariate skew-T distribution (T 2) with
the location parameter set to (−2.5, −2.6), the dispersion matrix � has components 	11 = 30.40, 	12 = 26.98,
	22 = 28.80, the shape parameter 
 = (10, 50), and the non-zero components of the translation vectors are log(100)

instead of log(1000). This last experiment is performed to see the behaviour of such a modelling in a very unfavourable
situation. A sample drawn from this distribution is depicted in Fig. 1. Different symbols (circles, triangles, crosses
and squares) are used to indicate the four T 2 generating distributions corresponding to the different error patterns.
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Table 2
Results for the experiments where the data distribution is (1) bivariate normal distribution (S0), (2) bivariate T distribution with 1 d.f. (T 0), and (3)
bivariate skew-T distribution (T 1), the translation constant is based on log(1000) and sample size n = 500

Data distribution S0 T 0 T 1
benchmark 492.450 487.610 439.520

mixt Correct Class 492.570 487.370 340.290
Freq BIC 100 0 0

homo2 Correct Class 492.480 485.940 413.060
Freq BIC 0 0 0

homo3 Correct Class 492.440 485.120 418.930
Freq BIC 0 7 7

homo4 Correct Class 492.080 484.620 419.130
Freq BIC 0 13 11

homo5 Correct Class 491.580 483.350 419.990
Freq BIC 0 36 44

homo6 Correct Class 490.520 481.880 421.420
Freq BIC 0 44 38

hete2 Correct Class 492.360 487.500 408.110
Freq BIC 100 3 0

hete3 Correct Class 492.030 487.040 427.510
Freq BIC 0 82 25

hete4 Correct Class 492.100 486.700 431.260
Freq BIC 0 13 52

hete5 Correct Class 491.350 485.950 430.920
Freq BIC 0 2 21

hete6 Correct Class 490.530 484.870 430.160
Freq BIC 0 0 2
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Fig. 1. A sample drawn from a four component mixture of T 2 translated by log(100).

The situation is critical, as it is almost impossible to distinguish the four mixture components. The results of the
simulation are reported in Table 3.

The experiments provide evidence to draw some conclusions. A simple normal mixture works satisfactorily in
situation not so far from the normality assumption, like S0 and T 0 (Tables 1 and 2). In these cases, the use of a more
complex model does not cause any improvement. Moreover, heteroscedastic models seem to perform slightly better
than homoscedastic ones.
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Table 3
Results for the experiments where the data distribution is bivariate skew-T distribution (T 2), the translation constant is based on log(100) and
sample size n = 1000

Data distribution T 2
benchmark 779.660

mixt Correct Class 596.110
Freq BIC 0

homo2 Correct Class 629.920
Freq BIC 0

homo3 Correct Class 701.240
Freq BIC 1

homo4 Correct Class 709.770
Freq BIC 14

homo5 Correct Class 720.660
Freq BIC 19

homo6 Correct Class 726.840
Freq BIC 66

hete2 Correct Class 718.480
Freq BIC 0

hete3 Correct Class 757.200
Freq BIC 0

hete4 Correct Class 765.600
Freq BIC 31

hete5 Correct Class 768.540
Freq BIC 45

hete6 Correct Class 769.230
Freq BIC 24

When the generating probability distribution function is (T 1) (skew and heavy tails), the gain obtained by the
heteroscedastic model with respect to the simple normal mixture is sensible, and it approaches the optimal classification.
Also the homoscedastic modelling behaves better than the simple normal mixture (a low gain in the case of 1000
observations experiment), but the gain is always less than that obtained by the heteroscedastic one.

In the last experiment, the most critical situation, there is a sensible gain by using the homoscedastic model with
respect to the simple normal mixture, but the behaviour of the heteroscedastic mixture is much better, approaching the
benchmark given by the optimal classification. A final consideration regards the choice of the number of components.
For the heteroscedastic case, the results show that the BIC does not always address the best model. However, even
when the mode of the frequency of choice of a certain model does not correspond to the best average classification, the
absolute difference between the average number of correctly classified units is very low. The same can be stated for the
homoscedastic model, apart the pathological behaviour in the case T 0. Actually, the BIC suggests the six-component
model, while the simple mixture has the best classification behaviour. Furthermore, this simple model is never chosen
in the 100 experiments.

A further experiment is devoted to test the starting point method chosen for the experiments so far described. The
EM algorithm is initialized by using a constrained version of K-means clustering algorithm, as described in Section
4. In order to evaluate this initialization method, two samples of 1000 observations from T 1 and T 2 are drawn. For
each sample, the mixture of mixture models with four heteroscedastic components is estimated 100 times with the
constrained K-means initialization. For all the estimates, the value reached by the likelihood is the same.

6. Application to real data

To illustrate the effectiveness and test the performance of our proposal, we carry out an experiment on a subset of
the 1997 Italian LCS. The LCS is a periodic sample survey that collects information on employment, hours worked,
wages, salaries and labour cost on about 12,000 firms with more than 10 employees. The survey is subjected to
a specific European Regulation requiring all the European Community Member States to collect every four years
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Fig. 2. Classification through homoscedastic mixture with M = 6 within cluster components.

4 6 8 10 12 14 16

12

10

8

6

4

2

LCOST

LH
O

U
R

Fig. 3. Classification through a heteroscedastic mixture with M = 3 within cluster components.

detailed information about the labour cost and employment structure in some specific industries. Our data-set consists
of 744 units that belong to the metallurgic economic activity sector. In particular, we analyse two main variables
measuring the Total Labour Cost (LCOST) and Total Hours Worked (LHOUR). These variables are affected by the
1000-factor error, since some respondents have expressed the LCOST in thousand of Italian Lira instead of millions,
and similarly the hours have not been reported in thousand as requested. Details on the error profile and the impact of
systematic error on data accuracy can be found in Cirianni et al. (2000).

The logarithmic transformation of the LCOST and LHOUR is taken, and the clusters associated with the four different
error patterns are defined as follows: cluster1 = no errors, cluster2 = only LHOUR in error, cluster3 = only LCOST
in error, cluster4 = both variables in error.

In order to classify firms according to their unity measure error pattern, we follow the approach described in the
previous sections, modelling data through a homoscedastic and heteroscedastic Gaussian mixture of mixtures. The
starting points for the EM algorithm are determined through the constrained K-means algorithm described in Section
4. Different experiments are performed by varying the number M of the components of the within-cluster mixture.
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The optimal number of components is chosen according to the BIC criterion. It results that the appropriate choice for
the homoscedastic model is M = 6, while for the heteroscedastic model is M = 3. The resulting classifications are
reported in Figs. 2, and 3, respectively. The four estimated clusters are represented with different symbols (circles,
triangles, crosses and squares) as in Fig. 1, and the contour plot (at levels 0.05, 0.01, 0.005, 0.001) of the estimated
mixture of mixtures, together with their mean vectors (black dots) are reported. Note that, for the sake of simplicity,
only the means of the cluster1 are reported, while the others can be easily obtained by the appropriate translation.
The classification is almost the same with homoscedastic and heteroscedastic models. This is mainly due to the fact
that the clusters are well separated and identifiable. It is worthwhile noting that, in the heteroscedastic model (Fig. 3),
there are two mixture components that are located almost at the same point. The two components differ mainly for the
estimated covariance matrix. As noted in Section 3, this kind of mixture is useful to approximate symmetric distribution
with heavy tails. A stronger sensitivity to the model, in terms of classification performance, is expected in presence
of clusters more overlapping each other, as noted in Section 5. The estimation of the mixture model parameters and
the clustering has been carried out through a code developed in the R environment (R Development Core Team, 2004)
available upon request.

7. Discussion

In this paper, a method to identify observations affected by unity measure errors is proposed. The problem is rein-
terpreted in a probabilistic clustering framework. The p.d.f. of the observations is modelled as a finite mixture where
each component corresponds to a particular error pattern. The density of each component is, in turn, estimated by
using a finite mixture of Gaussians in order to allow a more general setting. The resulting model, a ‘mixture of mix-
tures’, is proved to be identifiable under suitable conditions. A similar approach has been also used by Hastie and
Tibshirani (1996) in the discriminant analysis context. The maximum likelihood estimates of model parameters are
computed using an EM algorithm. An initialization strategy based on a constrained version of K-means algorithm
is proposed. This technique seems to be appropriate in providing starting points for the EM. Indeed, simulation ex-
periments (not reported here) show that classification of error patterns based only on K-means algorithm performs
quite satisfactorily even though the number of units correctly classified is lower than that obtained using mixture
model. These results can be explained noting that classification based on K-means algorithm is equivalent to classi-
fication based on a Gaussian mixture whose components have spherical covariance matrices (Gordon, 1999). Never-
theless, whenever within-group independence cannot be assumed, models corresponding to more complex association
structures are expected to perform better. Two different settings, with equal covariance matrices at the second level
(homoscedastic) and possibly different covariance matrices (heteroscedastic) are tested and compared through sim-
ulation studies. The approach is shown to be useful to deal with data distributed far from the Gaussianity. Results
suggest a strategy based on the use of a constrained K-means algorithm for the inizialization step of the EM estimation
phase, the use of heteroscedastic models, and the BIC as penalizing function for choosing the number of components
of the mixture.
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