
 2004 Royal Statistical Society 0964–1998/04/167323

J. R. Statist. Soc. A (2004)
167, Part 2, pp. 323–339

Robust automatic methods for outlier and error
detection

Ray Chambers,

University of Southampton, UK

Adão Hentges

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

and Xinqiang Zhao

University of Southampton, UK

[Received September 2002. Final revision May 2003]

Summary. Editing in surveys of economic populations is often complicated by the fact that out-
liers due to errors in the data are mixed in with correct, but extreme, data values. We describe
and evaluate two automatic techniques for the identification of errors in such long-tailed data
distributions. The first is a forward search procedure based on finding a sequence of error-free
subsets of the error-contaminated data and then using regression modelling within these sub-
sets to identify errors.The second uses a robust regression tree modelling procedure to identify
errors. Both approaches can be implemented on a univariate basis or on a multivariate basis.
An application to a business survey data set that contains a mix of extreme errors and true
outliers is described.
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1. Introduction

1.1. Overview
Outliers are common in business and economic surveys. They are data values that are so unlike
values that are associated with other sample units that ignoring them can lead to wildly inaccu-
rate survey estimates. Outlier identification and correction is therefore an important objective of
survey processing, particularly for surveys carried out by national statistical agencies. In most
cases these processing systems operate by applying a series of edits that identify data values that
are outside bounds determined by the expectations of subject-matter specialists. These outlier
values are then investigated further, in many cases by recontacting the survey respondents, to
establish whether they are due to errors in the data capture process or whether they are in fact
valid. Chambers (1986) referred to the latter valid values as representative outliers, in so far as
there is typically no reason to believe that they are unique within the survey population. Outlier
values that are identified as errors, in contrast, are not representative, and it is assumed that they
are corrected as part of survey processing. A common class of such errors within the business
survey context is where the survey questionnaire asks for answers to be provided in one type of
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unit (e.g. thousands of pounds) whereas the respondent mistakenly provides the required data
in another unit (e.g. single pounds). Sample cases containing this type of error therefore have
true data values that are inflated by a factor of 1000. Left uncorrected, such values can seriously
destabilize the survey estimates.
The standard approach to the type of situation described above is to use a large number of

edits to identify as many outliers as possible during survey processing. These outliers are then
followed up to establish their correct values. If the correct value is identical to the value that
triggered the edit failure, then this value is not an error but corresponds to a representative
outlier. In this case the usual strategy is to replace it by an imputed value, typically one that is
subjectively determined as ‘more typical’. In continuing surveys this can be the previous value
of the same variable, provided that that value is acceptable.
There are two major problems with this approach. The first is that it can be extremely labour

intensive. This is because the edit bounds are often such that a large proportion of the sample
data values lie outside them. This leads to many unnecessary recontacts of surveyed individuals
or businesses, resulting in an increase in the burden of response. Secondly, the subjective cor-
rections applied to representative outliers lead to biases in the survey estimates, particularly for
estimates of change. Since often large numbers of such representative outliers are identified by
this type of strategy, the resulting biases from their ‘correction’ can be substantial.
This paper describes research that is aimed at identifying an editing strategy for surveys

that are subject to both outliers and errors that overcomes some of the problems identified
above. In particular, the aim is to develop an automated outlier identification strategy that
finds as many significant errors in the data as possible, while minimizing the number of rep-
resentative outliers also identified (and whose values are therefore incorrectly changed). In
particular, the methods described below do not rely on the specification of edit bounds and use
modern robust methods to identify potential errors, including outliers, from the sample data
alone.

1.2. The Annual Business Inquiry data
This research has been carried out as part of the EUREDIT project (Charlton et al., 2001). In
particular, we use two data sets that were created within this project for the specific purpose of
evaluating automaticmethods for editing and imputation. Both contain data for 6099 businesses
that responded to the UK Annual Business Inquiry (ABI) in the late 1990s. The values in the
first data set have been thoroughly checked and there are no missing values. We refer to it as the
clean data below. Note that these data are not necessarily the ‘truth’. What they represent are
data of sufficient quality for use in official statistics. The second data set contains values for the
same variables and businesses as in the first. However, these values now include both introduced
errors and missing values, and can be considered as representing the type of ‘raw’ data that are
typically seen before editing. We refer to this data set as the perturbed data below. Note that the
clean data and the perturbed data contain a significant number of common extreme values (i.e.
representative outliers), reflecting the fact that the clean data may still contain errors.
Table 1 lists the names anddefinitions of the variables that are collected in theABI thatwe con-

sider in this paper. The names are those used in the EUREDIT project, and these seven variables
represent the major outcome variables for the ABI. In addition we assume that we have access
to ‘complete’ (nomissing values and no errors) auxiliary information for the sampled businesses
on the Inter-Departmental Business Register (IDBR) (the sample frame for the ABI). The most
important auxiliary variable is the estimated turnover of a business (turnreg, defined in terms of
the IDBR value of turnover for a business, in thousands of pounds). Other auxiliary informa-
tion on the IDBR relates to the estimated number of employees of a business and its industrial
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Table 1. ABI variables

Name Definition

turnover Total turnover
emptotc Total employment costs
purtot Total purchases of goods and services
taxtot Total taxes paid
assacq Total cost of all capital assets acquired
assdisp Total proceeds from disposal of capital assets
employ Total number of employees

classification. Together, these define the sampling strata for the ABI. Below we assume that we
have access to the strata affiliations of the businesses sampled.
Figs 1 and 2 show the relationship between the ABI variables and the auxiliary variable

turnreg for the values that are contained in the clean data and the perturbed data. Because
these variables are extremely heteroscedastic, scatterplots of their raw values reveal little. Con-
sequently all plots in Figs 1 and 2 are on the log-scale. Also, for confidentiality, no scale is
displayed on these plots. It is clear from Figs 1 and 2 that, although the general relationship
between turnreg and the ABI variables is linear in the log-scale, a comparison of the clean data
and the perturbed data shows that there are a very large number of significant errors leading
to outliers (these appear as triangles in Fig. 2, but not in Fig. 1) as well as large representative
outliers (these appear in both Fig. 1 and Fig. 2).

2. Outlier identification via forward search

The first automatic method that we investigate was suggested by Hadi and Simonoff (1993). See
also Atkinson and Riani (2000). The basic idea is simple. To avoid the well-knownmasking and
swamping problems that can occur when there aremultiple outliers in a data set (see Barnett and
Lewis (1994) and Rousseeuw and Leroy (1987)), the algorithm starts from an initial subset of
observations of sizem < n that is chosen to be outlier free. Here n denotes the number of obser-
vations in the complete data set. In the regression context, a model for the variable of interest is
estimated from this initial clean subset. Fitted values generated by this model are then used to
generate n distances to the actual sample data values. The next step in the algorithm redefines the
clean subset to contain those observations corresponding to them+1 smallest of these distances
and the procedure is repeated. The algorithm stops when distances to all sample observations
outside the clean subset are all too large or when this subset contains all n sample units.
To specify this forward search procedure more accurately, we assume that values of a p-

dimensional multivariate survey variable Y and a q-dimensional multivariate auxiliary variable
X are available for the sample of size n. We denote an individual’s value of Y and X by yi and xi

respectively. The matrix of sample values of Y and X is denoted by y = .y1. . . yn/′ and x =
.x1. . .xn/′ respectively. We seek to identify possible outliers in y.
Generally the identification of such outliers is relative to some assumed model for the condi-

tional expectation of Y given X. Given the linear structure that is evident in Figs 1 and 2, we
assume that a linear modelE.Y/=βX can be used to characterize this conditional expectation,
whereβ = .β′

1. . .β
′
p/′ is a p×qmatrix of unknown parameters. A large residual for one ormore

components of Y is typically taken as evidence that these values are outliers.



326 R. Chambers, A. Hentges and X. Zhao

(a)

(c)

(e)

(g)

(f)

(d)

(b)

Fig. 1. Plot of the clean data on a log-scale (in all cases the x-axis is turnreg): (a) turnover; (b) emptotc;
(c) purtot; (d) taxtot; (e) assacq; (f) assdisp; (g) employ
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Fig. 2. Plot of the perturbed data on a log-scale (in all cases the x-axis is turnreg): (a) turnover; (b) emptotc;
(c) purtot; (d) taxtot; (e) assacq; (f) assdisp; (g) employ
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For p = 1 we let β̂.m/ and σ̂2.m/ denote the regression model parameter estimates based on
a clean subset of size m. For an arbitrary sample unit i, Hadi and Simonoff (1993) suggested
that the distance from the observed value yi to the fitted value generated by these estimates be
calculated as

di.m/ = |yi −x′
iβ̂.m/|

σ̂.m/
√{1−λix′

i.X
′
.m/X.m//−1xi}

where X.m/ denotes the matrix of values of X that is associated with the sample observations
making up the clean subset and λi takes the value 1 if observation i is in this subset and −1
otherwise. The clean subset of size m+ 1 is then defined by those sample units with the m+ 1
smallest values of di.m/. For p>1, Hadi (1994) used the squared Mahalanobis distance

D2
i.m/ = .yi − ŷi.m//

′Ŝ−1
.m/.yi − ŷi.m//

where ŷi.m/ denotes the fitted value for yi generated by the estimated regression models for the
components of this vector, and

Ŝ.m/ = .m−q/−1
∑

.yi − ŷi.m//.yi − ŷi.m//
′

denotes the estimated covariance matrix of the errors that are associated with these models. The
summation here is over the observations making up the clean subset of size m.
For p = 1 Hadi and Simonoff (1993) suggested stopping the forward search when the

(m + 1)th-order statistic for the distances di.m/ is greater than the 1−α=2.m+1/ quantile of
the t-distribution on m− q degrees of freedom. When this occurs the remaining n−m sample
observations are declared outliers. Similarly, when p > 1, Hadi (1994) suggested that the for-
ward searchbe stoppedwhen the (m+1)th-order statistic for the squaredMahalanobis distances
D2

i.m/ exceeds the .1−α=n/-quantile of the χ2-distribution on p degrees of freedom.
Definition of the initial clean subset is important for implementing the forward search proce-

dure. Since the residuals from the estimated fit based on the initial clean subset define subsequent
clean subsets, it is important that the parameter estimates defining this estimated fit are unaf-
fected by possible outliers in the initial subset. This can be achieved by selecting observations to
enter this subset only after they have been thoroughly checked. Alternatively, we use an outlier
robust estimation procedure applied to the entire sample to define a set of robust residuals, with
the initial subset then corresponding to the m observations with smallest absolute residuals
relative to this initial fit. Our experience is that this choice is typically sufficient to allow use
of more efficient, but non-robust, least squares estimation methods in subsequent steps of the
forward search algorithm.
Before ending this section, we should point out that the forward search method described

above is based on a linear model for the non-outlier data, with stopping rules that implicitly
assume that the error term in this model is normally distributed. Although Figs 1 and 2 indicate
that these assumptions are not unreasonable for logarithmic transforms of the ABI data, it is
also clear that they are unlikely to hold exactly. This may not be of practical consequence if
these stopping rules are activated when the error distribution starts to deviate from the nor-
mal distribution. However, an alternative outlier detection method that does not assume either
linearity or normality appears to be worth considering.

3. Outlier identification via robust tree modelling

Regression tree models (Breiman et al., 1984) are now widely used in statistical data analysis,
especially in data mining applications. Here we use a tree modelling approach that is robust to
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the presence of outliers in data to identify gross errors and extreme outliers. TheWAID software
for regression and classification tree modelling that was used for this purpose was developed for
missingdata imputationunder theAutimpproject (Chambers et al., 2001).Under theEUREDIT
project a toolkit of programs has been created that emulates and extends the capabilities of
WAID. These programs work under R (Ihaka and Gentleman, 1996). Similar software prod-
ucts are CART (Steinberg and Colla, 1995), the S-PLUS (MathSoft, 1999) tree function (also
available in R), the R function rpart and the CHAID program in SPSS AnswerTree (SPSS,
1998). The code for the WAID toolkit is available from the authors.
The basic idea behind WAID is to divide the original data set sequentially into subgroups or

nodes that are increasingly more homogeneous with respect to the values of a response variable.
The splits themselves are defined in terms of the values of a set of categorical covariates. The
categories of these covariates do not need to be ordered. By definition, WAID is a nonpara-
metric regression procedure. It also has the capacity to implement outlier robust splitting based
onM-estimation methodology (Huber, 1981). In this case outliers are ‘locally’ downweighted
when calculating the measure of within-node heterogeneity (weighted residual sum of squares)
that is used to decide whether a node should be split or not. The weights that are used for this
purpose are themselves based on outlier robust influence functions.

3.1. The WAID regression tree algorithm for univariate Y
TheWAID regression tree algorithm assumes a rectangular data set containing n observations,
values {yi} of a univariate response variable Y and values {x1i. . . xpi} of p categorical covari-
atesX1, . . . ,Xp. No missing X -values are allowed in the current version of WAID. For scalar Y
WAID builds a regression tree. If Y is categorical, WAID builds a classification tree. The only
difference between these two types of tree is the heterogeneity measure that is used to deter-
mine tree splitting behaviour. Since our focus is the identification of outliers, we are concerned
with scalar response variables only and so we restrict consideration to WAID’s regression tree
algorithm.
The basic idea used in WAID (as well as other tree-based methods) is to split the original

data set into smaller subsets or ‘nodes’ in which Y -values are more homogeneous. In WAID
this is accomplished by sequential binary splitting. At each step in the splitting process, all
nodes created up to that point are examined to identify the one with maximum heterogeneity.
An optimal binary split of this ‘parent’ node is then carried out. This is based on identifying a
set of values of one of the covariates X1, . . . ,Xp such that a split of the parent node into one
‘child’ node containing only cases having these values and another child node containing the
remaining cases minimizes the heterogeneity of these child nodes. In searching for this optimal
split, covariates are classified as monotone or non-monotone. Candidate splits for a monotone
X are determined by splits with respect to the ordered values ofX in that node. Candidate splits
for a non-monotone X are defined with respect to values of X sorted by their corresponding
average Y -value in the node. The splitting process continues until a suitable stopping criterion
is met. At present this is when either

(a) all candidate parent nodes are effectively homogeneous,
(b) all candidate parent nodes are too small to split further or
(c) a user-specified maximum number of nodes is reached.

Unlike some other tree modelling software packages (e.g. CART), there is no attempt to find
an ‘optimal’ tree. The set of nodes defining the final tree is typically referred to as the terminal
nodes of the tree.
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As the above description implies, the crucial step in the splitting process is the calculation of
the heterogeneity for a particular node. For the kth node created in the splitting process this is
the weighted sum of squared residuals

WSSRk =∑
i∈k

wik.yi − ȳwk/2

where i∈ k denotes the cases making up the node, wik is the weight attached to the ith case in
the node and ȳwk is the weighted mean of Y in the node:

ȳwk =∑
i∈k

wikyi

/∑
i∈k

wik:

The weight wik is calculated as the ratio

wik = ψ.yi − ȳwk/

yi − ȳwk

where ψ.x/ denotes an appropriately chosen influence function. The S-PLUS or R toolkit ver-
sion ofWAIDuses weights that are returned by the robust regression function rlm in theMASS
robust statistics library (Venables and Ripley, 1994). These weights are rescaled within WAID
to sum to the number nk of cases within node k.

3.2. The WAID regression tree algorithm for multivariate Y
Unlike other regression tree algorithms, the WAID toolkit can also build a regression tree for a
p-dimensional response variable Y , and so it can be used for multivariate outlier detection. The
only difference between the univariate and multivariate tree fitting procedures is the method
that is used to calculate the heterogeneity of a candidate node. Three options are available in
this regard. In what follows tree ‘stages’ are indexed by k (k =1 corresponds to the original data
set and k =K denotes the final stage of the tree), and the candidate nodes for splitting at stage
k are indexed by h.

3.2.1. Option 1
The program first grows p univariate trees, one for each component of the response vector. Each
such tree is characterized by an n×Kmatrix of weights, where column k of this matrix contains
the weights that are used to determine node heterogeneity for all nodes defined at stage k of the
tree growing procedure.
Let w.hk/

ij denote the weight that is associated with case i in node h at stage k of the univariate
tree defined by response variable j. WAID then builds a tree by using the heterogeneity measure
for candidate node h at stage k of the multivariate tree:

WRSShk = ∑
i∈h

p∑
j=1
w.hk/

ij .yij − ȳ
.k/
whj/2

where

ȳ
.k/
whj = ∑

i∈h

w.hk/
ij yij

/ ∑
i∈h

w.hk/
ij :

We can think of this as an ‘average heterogeneity’ approach. It is not scale invariant—a compo-
nent response variable that is much larger in scale than the other component response variables
will dominate this heterogeneity measure and hence dominate the tree growing process. Conse-
quently component variables that differ wildly in terms of scale should be first rescaled before
this option is used to build a multivariate tree.
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3.2.2. Option 2
In the second option againWAIDgrowsp univariate trees to obtain the weightsw.hk/

ij . However,
in this case themeasure of heterogeneity for candidate node h at stage k in themultivariate tree is

WRSSk = ∑
i∈h

w.hk/
i

p∑
j=1

.yij − ȳ
.k/
whj/2

where

ȳ
.k/
whj = ∑

i∈h

w.hk/
i yij

/∑
i∈h

w.hk/
i

and

w.hk/
i =p−1 p∑

j=1
w.hk/

ij :

We can think of this approach as an ‘average weight’ approach. It also is not scale invariant.

3.2.3. Option 3
The third option is the only truly multivariate tree growing option in WAID. The weight that is
associated with observation i in candidate node h at stage k is calculated iteratively as

w.hk/
i = ψ.

∥∥yi − ȳ.k/
wh

∥∥
wh

/∥∥yi − ȳ.k/
wh

∥∥
wh

where yi denotes the p-vector of response values for this case,

ȳ.k/
wh = ∑

i∈h

w.hk/
i yi

/ ∑
i∈h

w.hk/
i ,

the function ψ corresponds to an influence function and
∥∥yi − ȳ.k/

wh

∥∥
wh

=
√{

p∑
j=1

s−2
whj.yij − ȳ

.k/
whj/2

}
,

where

s2whj = ∑
i∈h

w.hk/
i .yij − ȳ

.k/
whj/2

/ ∑
i∈h

w.hk/
i :

3.3. Outlier identification using WAID
Each time that WAID splits the data set to create two new nodes it creates a new set of weights
for the cases making up those nodes. When these weights are based on a robust influence func-
tion, outliers within the node have weights that are close to 0 and non-outliers have weights
around 1. These weights reflect distance from a robust estimate of location for the values in the
node. Consequently a value that is not immediately identifiable as an outlier within larger nodes
created earlier in the tree building process is more likely to become identified as such as it is clas-
sified into increasingly smaller nodes. In effect, the weights that are associated with such cases
tend to move towards 0. Conversely, extreme points in the covariate space with corresponding
extreme Y -values are initially given small weights. However, such points are quickly isolated
into terminal nodes in the tree splitting process, at which point the weights that are associated
with these points increase back to values near 1.
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TheWAID outlier identification algorithm defines an outlier as a case with an average weight
over all node splits that are less than a specified threshold. An optimal threshold value wÅ is one
that successfully identifies outliers due to errors while minimizing the identification of true (i.e.
representative) outliers. Let Nerrors equal the total number of true errors in the data, and, for
a given threshold w, put Noutliers.w/ equal to the total number of outliers identified by WAID
on the basis of the specified threshold w,nerrors.w/ equal to the corresponding number of errors
identified as outliers and nnon-errors.w/ equal to the total number of non-errors identified as
outliers. The proportion of error-generated outliers identified by WAID is

R1.w/=nerrors.w/=Nerrors

whereas the proportion of non-errors identified as outliers by using the threshold w is

R2.w/=nnon-errors.w/=Noutliers.w/=1−nerrors.w/=Noutliers.w/:

The optimal threshold value is then

wÅ =argmax
w
[R1.w/{1−R2.w/}]:

4. Identifying errors and outliers in the perturbed data

4.1. Error detection by using forward search
Table 2 shows the incidence of errors and missing values for each of the ABI variables in the
perturbed data. It also shows the incidence of ‘not applicable’ codes for these variables (indi-
cating that no response was required for that variable for a sampled business) and the incidence
of zero values. Note the large number of zero values for the assdisp and assacq variables.
We first applied the forward search algorithm that is described in Section 2 to these data,

treating each variable separately (i.e. a univariate forward search). In each case we fitted a linear
model in the logarithmof the variable concerned, using the logarithmof turnreg as the covariate.
Two types of model were investigated. The first (across stratum) was fitted using all cases in the
data set. The second (stratum level) fitted a separate linear model within each sampling stratum
in the data set. Cases with zero, not applicable or missing values were excluded from the outlier
search procedure. As described in Section 2, the initial subset for the forward search procedure
was defined by the smallest absolute residuals from a robust regression fit to the entire data set.
This regression fit was based on the bisquare influence function

ψ.t/= t{1−min.1, t2=c2/}2,

Table 2. Incidence of incorrect and non-standard data types in the perturbed data

Data type Incidences for the following variables:

turnover emptotc purtot taxtot assacq assdisp employ

Not applicable 0 0 0 0 908 1389 0
Missing 42 41 28 45 57 63 35
Errors 241 332 629 482 248 223 49
Zero 3 658 5 390 2106 3208 721
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Table 3. Numbers of outliers detected (with numbers of errors detected in parentheses)
by using univariate forward search applied to the perturbed data

Model type Outliers detected for the following variables:

turnover emptotc purtot taxtot assacq assdisp employ

Across stratum 349 226 361 224 8 14 11
(225) (219) (281) (219) (8) (14) (5)

Stratum level 467 279 441 245 102 56 77
(227) (237) (294) (235) (90) (52) (24)

Table 4. Error detection performance of the multivariate forward
search procedure (across-stratum model) applied to perturbed data†

Number of errors Total number Records declared
per record of records as outliers

(a) (b) (a) (b)

0 4294 4577 96 145
1 489 374 194 172
2 165 8 31 5
3 13 2 3 2
4 154 155 154 155
5 3 2 3 2

Total 5118 5118 481 481

†Numbers in columns labelled (a) refer to all cases, whereas numbers in
columns labelled (b) refer to cases with ‘significant’ errors.

with c =4:685. The size of this initial data set was set at 70% of the size of the overall data set,
since smaller initial data sets greatly increased the execution time of the algorithm and led to
no change in the set of outliers identified. The stopping rule suggested by Hadi and Simonoff
(1993) was used, with α=0:01. Table 3 shows the results from this univariate outlier search. On
the basis of these results the across-stratum specification of the regression model that was used
in the forward search seems preferable for the ABI data.
A multivariate forward search was also carried out. In this case we restricted attention to

the 5118 cases where turnover, emptotc, purtot, taxtot and employ were all strictly positive. We
excluded the variables assacq and assdisp from consideration because the large number of zero
values for these variables meant that only a small number of cases had strictly positive values
for all seven variables. In the columns labelled (a) in Table 4 we show the number of cases with
errors detected by this method distributed according to the number of errors in each case. We
see that, out of a total of 824 cases with one or more errors, the multivariate forward search
detected 385. It also identified 96 cases with no errors as outliers. If we restrict attention to those
cases with ‘significant’ errors in one or more of turnover, emptotc, purtot, taxtot and employ,
i.e. those cases where the perturbed values of these variables differ by more than 100%
from their values in the clean data, then we obtain the results that are shown in the columns
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Table 5. Comparing the outlier detection performances of the univariate and multi-
variate forward searches (across-stratum model) applied to the perturbed data

Number of outliers Total number Number of records Number of records
detected by of records not identified by identified by
univariate search multivariate search multivariate search

0 4659 4623 36
1 254 14 240
2 39 0 39
3 16 0 16
4 146 0 146
5 4 0 4

Total 5118 4637 481

labelled (b) in Table 4. In this case the multivariate forward search procedure finds 336 out of
the 541 cases with at least one significant error.
In Table 5 we contrast the performance of the multivariate forward search with that of the

individual univariate forward search procedures. In both cases the across-stratum version of the
model was used in the forward search procedure. Here we see that 36 records were identified
as outliers by the multivariate search and were not identified as such by any of the univari-
ate searches. Furthermore only 14 records were identified by one of the univariate searches as
containing an outlier and were not identified as such by the multivariate search. All records
containing two or more outliers (as identified by the univariate searches) were also identified as
outliers by the multivariate search.
Given that the multivariate forward search is restricted to cases where all components are

non-zero, and given the lack of a strong differentiation in the performance of these two meth-
ods with the perturbed data, we restrict attention to comparisons with the univariate forward
search method in what follows.

4.2. Error detection by using WAID
Initially we focus on a univariate approach, building robust trees for the individual variables
in Table 1. For brevity we provide results only for turnover, emptotc and assacq, since these
are representative of the results that are obtained for the other variables. In all cases we built
trees for the logarithm of the variable value. As in the previous section, cases with zero, not
applicable or missing values were excluded from the tree building process. All trees used the
register variable turnreg, categorized into its percentile classes, as the covariate. This covariate
was treated as monotone in the tree building process and each tree was built using the default
option of robust splitting based on the bisquare influence function (c = 4:685). All trees were
grown to 50 terminal nodes, with no node containing fewer than five cases.
A comparison of the trees grown using the clean data and the perturbed data showed that

they were virtually identical, indicating that the errors in the perturbed data have virtually no
effect on the tree growing process. Furthermore, these trees were substantially different from
corresponding non-robust trees (ψ.t/= t) grown from these data sets.
Fig. 3 shows the plots of R1.w/ and R1.w/{1−R2.w/} that were generated by these trees for

the variables turnover, emptotc and assacq.We see that, for all three variables,R1.w/{1−R2.w/}
attains a maximum early and then falls away steadily. This behaviour is reflected in the plots for
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(a)

(c)

(b)

Fig. 3. Plot of R1.w/ (- - - - - - - ) and R1.w/{1�R2.w/} ( ) for univariate WAID trees (the x-axis is the
value of w): (a) turnover; (b) emptotc; (c) assacq

R1.w/, which show that most of the errors in these variables are detected by using small values
of w, with few non-errors detected at the same time. As w increases, the remaining errors are
then gradually detected, at the cost of identifying increasing numbers of non-errors as outliers,
evidenced by the increasing separation of R1.w/ and R1.w/{1−R2.w/}.
In most cases, errors detected at larger values of w are ‘non-significant’, reflecting small dif-

ferences from corresponding true values. As in the previous section, we define a significant error
as an error where the relative difference between the perturbed data value and the clean data
value is greater than 1. Table 6 shows the values of R1.w/ (denoted Rsig) when only significant
errors are taken into account. Observe that for all three variables over 80% of such errors are
identified at the optimal value wÅ.
Table 6 also contrasts the performance of the WAID procedure with the corresponding

forward search procedures. Here we see that for turnover this approach does identify all the
significant errors in the data, but at the cost of identifying many more outliers than the WAID-
based procedure. Both approaches seem comparable for emptotc. However, for assacq the
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Table 6. Univariate WAID error detection performance (perturbed data) for turnover, emptotc and assacq
compared with the corresponding forward search performance†

Method Outliers Errors Significant R1 Rsig R2 R1(1−R2)
detected detected errors
(Nout) (Nerror) detected (Nsig)

turnover
WAID 194 191 190 0.793 0.913 0.015 0.780
Forward search, 349 225 206 0.941 1.000 0.355 0.607
across stratum

Forward search, 467 227 206 0.950 1.000 0.514 0.462
stratum level

emptotc
WAID 249 236 234 0.711 0.876 0.052 0.674
Forward search, 226 219 218 0.664 0.823 0.031 0.643
across stratum

Forward search, 279 237 229 0.718 0.864 0.151 0.577
stratum level

assacq
WAID 210 195 195 0.799 0.837 0.071 0.742
Forward search, 8 8 8 0.033 0.035 0 0.033
across stratum

Forward search, 102 90 90 0.372 0.390 0.118 0.328
stratum level

†WAID results are for w=wÅ.

Table 7. Effect of tree size (numbers of terminal nodes) on outlier and error detec-
tion performance with the perturbed data†

Size wopt Nout Nerror Nsig R1 Rsig R2 R1(1−R2)

turnover
5 0.00001 206 189 188 0.784 0.904 0.083 0.720
10 0.00161 195 191 190 0.793 0.913 0.021 0.776
25 0.00075 194 191 190 0.793 0.913 0.015 0.780
50 0.00053 194 191 190 0.793 0.913 0.015 0.780
100 0.00053 194 191 190 0.793 0.913 0.015 0.780

assacq
5 0.03600 213 187 187 0.766 0.803 0.122 0.673
10 0.05009 226 195 195 0.799 0.837 0.137 0.690
25 0.04525 211 195 195 0.799 0.837 0.076 0.739
50 0.04464 210 195 195 0.799 0.837 0.071 0.742
100 0.03705 209 194 194 0.795 0.833 0.072 0.738

†In all cases the optimal value wÅ was used.

WAID-based procedure is clearly superior in terms of identifying significant errors, while keep-
ing the number of non-errors identified as outliers at an acceptable level.
The trees thatwere used in the preceding analysis all had 50 terminal nodes.Anatural question

to ask at this stage is therefore about the effect of the size of the tree (as measured by numbers
of terminal nodes) on the identification of outliers. Rather surprisingly, at least as far as the
perturbed data are concerned, size turns out to have little effect. Table 7 shows the performance
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characteristics of trees of varying size for turnover and assacq. Provided that a tree has 10 or
more terminal nodes, there is little to be gained by increasing the size of the tree.
So far we have investigated the performance of univariate trees for outlier and error detection.

We now consider the use of a multivariate tree for the same purpose. As with the multivariate
forward search procedure, we restrict attention to the five ABI variables turnover, emptotc,
purtot, taxtot and employ where excessive zero values are not a problem. Again, all data values
were transformed to the logarithmic scale.
Recollect that three options are available for growing amultivariate tree, corresponding to the

way that the ‘multivariate heterogeneity’ that is associated with a particular tree split is defined
(see Section 3.2). In Fig. 4 we show how the error detection performance for the turnover var-
iable for the three different trees generated by these options varies with w. This clearly shows
that option 1 (average heterogeneity) is the preferable approach for this variable.
In Table 8 we show the error detection performance diagnostics for each of the five com-

ponent variables and for each option at the optimal value of w thus defined. This confirms
our observation above that option 1 (average heterogeneity) is preferable to the two other

(a)

(c)

(b)

Fig. 4. Plot of R1.w/ (- - - - - - -) and R1.w/{1�R2.w/} ( ) for multivariate WAID trees for turnover (the
x-axis is the value of w): (a) option 1 (average heterogeneity); (b) option 2 (average weight); (c) option 3 (full
multivariate)
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Table 8. Error detection performance for a multivariate tree based on the
perturbed data†

wÅ Nout Nerror Nsig R1 Rsig R2 R1(1−R2)

turnover
0.0199 165 160 159 0.812 0.914 0.030 0.788
0.2593 177 119 119 0.604 0.684 0.328 0.406
0.0076 163 157 157 0.797 0.902 0.037 0.768

purtot
0.0326 214 204 197 0.394 0.925 0.047 0.375
0.4456 339 179 151 0.346 0.709 0.472 0.183
0.1062 254 198 193 0.382 0.906 0.221 0.298

taxtot
0.1085 334 275 273 0.679 0.7358 0.177 0.559
0.2593 177 121 121 0.299 0.3261 0.316 0.204
0.0672 196 182 182 0.449 0.4906 0.071 0.417

emptotc
0.0571 209 200 199 0.702 0.901 0.043 0.672
0.2593 177 119 119 0.418 0.539 0.328 0.281
0.0076 163 158 158 0.554 0.715 0.030 0.537

employ
0.1075 87 25 24 0.595 0.857 0.713 0.171
0.0178 8 2 2 0.048 0.071 0.750 0.012
0.4455 656 30 24 0.714 0.857 0.954 0.033

†Results for the three multivariate options, with w=wÅ, are set out below each
other for each variable. For option 1 (the first line for each variable), the optimal
value wÅ is the optimal univariate value.

multivariate options. However, comparing the results in Table 8 with those in Table 6, we see
that none of the multivariate trees perform significantly better than the corresponding univari-
ate trees. This is consistent with our earlier observation about the lack of a similar improvement
using the forward search approach and indicates that, for the perturbed data at least, virtually
all the errors are in low dimensions and so are easily detected via a univariate outlier search
procedure.

5. Discussion

In this paper we have compared two approaches to the identification of gross errors and out-
liers in survey data. The first uses a forward search procedure that is based on a parametric
model for the data. The second is based on a robust nonparametric modelling approach, based
on regression tree methodology. Software (WAID) for implementing this second approach was
described, and both approaches were evaluated by using a realistic business survey data set
created to reflect the errors that are typically found in such data. Overall, the regression tree
method performs rather well and, for the application that we considered, seems preferable to
the forward search procedure. Multivariate versions of both approaches were also evaluated.
Unfortunately, the data set that we used for the application did not appear to have a significant
number of trulymultivariate outliers, and sowe cannot at this stage recommend themultivariate
version of the regression tree procedure.
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The regression tree approach is dependenton the choiceof a tuning constant, corresponding to
the optimal weight cut-offwÅ. In the EUREDIT project the value of this constant is determined
by using a ‘completely edited’ data set that was obtained from a previous survey. This assumes
that the value ofwÅ remains the same over time. This is unlikely to be so. Further work therefore
needs to be carried out to determine an optimum updating strategy for this parameter.
The problem of dealingwith ‘special’ values (e.g. 0) when carrying out error detection remains

an open problem. In this paper we have implicitly assumed that these values are recorded with-
out error. However, this will typically not be true. Alternative models need to be constructed to
predict when an observed special value is an error. Some experience in using these models in
the EUREDIT project seems to show that, if such errors are randomly distributed over the
survey database, then there is little that can be done to identify them automatically.
Finally, we note that this paper does not address the issue of what should be done about

errors and outliers once they have been identified. Automatic methods for the imputation of
these values are a focus of the EUREDIT project. Here we just note that both the forward
search and the robust regression tree methods for outlier and error detection imply methods
for correcting these detected values. In the forward search case this is through the use of fitted
values generated from the final clean subset of the data. In the regression tree context this is
through the use of within-node imputation, using either the robust estimate of the nodemean or
by making a random draw from the non-outlier cases in the node (i.e. those cases with average
weights that are greater than the weight cut-off value).
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