Type Package

Package ‘SamplingStrata’

January 12, 2016

Title Optimal Stratification of Sampling Frames for Multipurpose
Sampling Surveys

Version 1.1
Date 2016-01-12

Author Giulio Barcaroli, Daniela Pagliuca, Egon Willighagen,

Diego Zardetto

Maintainer Giulio Barcaroli <barcarol@istat.it>

Description In the field of stratified sampling design, this package
offers an approach for the determination of the best
stratification of a sampling frame, the one that ensures the
minimum sample cost under the condition to satisfy precision
constraints in a multivariate and multidomain case. This
approach is based on the use of the genetic algorithm: each
solution (i.e. a particular partition in strata of the sampling
frame) is considered as an individual in a population; the
fitness of all individuals is evaluated applying the

Bethel-Chromy

algorithm to calculate the sampling size

satisfying precision constraints on the target estimates.

Functions in the package allows to: (a) analyse the obtained
results of the optimisation step; (b) assign the new strata

labels to the sampling frame; (c) select a sample from the new
frame accordingly to the best allocation.

Functions for the execution of the genetic algorithm are a modified
version of the functions in the 'genalg' package.

License GPL (>=2)
LazyLoad yes

Depends R (>=2.15.0), memoise

R topics documented:

bethel . . .

buildStrataDF e

checkInput .
errors . . .
evalSolution

optimizeStrata e e

plotSamprate
selectSample L e e e e
SLRAtA e e e e
SWISSEITOTS . & v v v v vt e e e e e e e e e e e e e e e e e e
SWISSITAME L e e e e e e e e
swissmunicipalities
SWISSSIIAta o oL e e e e
tuneParameters L
updateFrame L
updateStrata L L e e e e
VaLbIn . . . e e e e e e e

Index

bethel Multivariate optimal allocation

Description

Multivariate optimal allocation for different domains of interest in stratified sample design

Usage

bethel (

stratif,
errors,
minnumstrat=2,
maxiter=200,
maxiter1=25,
printa=FALSE,

realAllocation=FALSE,
epsilon=1e-11

)
Arguments

errors Data frame of coefficients of variation for each domain

stratif Data frame of survey strata

minnumstrat Minimum number of units per strata (default=2)

maxiter Maximum number of iterations of the algorithm (default=200)

maxiteri Maximum number of iterations (default=25) of the general procedure. This kind
of iteration may be required by the fact that when in a stratum the number of
allocated units is greater or equal to its population, that stratum is set as "census
stratum", and the whole procedure is re-initialised

printa If TRUE then two attributes are added to the resulting vector. The first (’confr’)

is a comparison between results obtained with 3 different allocation methods:
Bethel, proportional and equal. The second ("outcv’) is a table reporting planned

and actual CV, together with a sensitivity analysis

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation

is based on REAL values

buildStrataDF 3

epsilon Epsilon (default=1e-11)): this value is used to compare the difference in results
from one iteration to the other; if it it is lower than "epsilon", then the procedure
stops
Value

A vector containing the computed optimal allocation

Author(s)

Daniela Pagliuca with contributions from Teresa Buglielli and Giulio Barcaroli

Examples

library(SamplingStrata)

data(strata)

data(errors)

n <- bethel(strata, errors, printa=TRUE)

sum(n)

buildStrataDF Builds the "strata" dataframe containing information on target vari-
ables Y’s distributions in the different strata, starting from sample data
or from a frame
Description

This function allows to build the information regarding strata in the population required as an input
by the algorithm of Bethel for the optimal allocation. In order to estimate means and standard
deviations for target variables Y’s, we need data coming from: (1) a previous round of the survey
whose sample we want to plan; (2) sample data from a survey with variables that are proxy to
the ones we are interested to; (3) a frame containing values of Y’s variables (or proxy variables)
for all the population. In all cases, each unit in the dataset must contain auxiliary information
(X’s variables) and also target variables Y’s (or proxy variables) values: under these conditions
it is possible to build the dataframe "strata", containing information on the distribution of Y’s in
the different strata (namely, means and standard deviations), together with information on strata
(total population, if it is to be censused or not, the cost per single interview). If the information
is contained in a sample dataset, a variable named WEIGHT is expected to be present. In case of
a frame, no such variable is given, and the function will define a WEIGHT variable for each unit,
whose value is always *1°. Missing values for each Y variable will not be taken into account in the
computation of means and standard deviations (in any case, NA’s can be present in the dataset). The
dataframe "strata" is written to an external file (tab delimited, extension "txt"), and will be used as
an input by optimizeStrata.

Usage

buildStrataDF (dataset)

4 checkInput

Arguments
dataset This is the name of the dataframe containing the sampling data, or frame data.

It is strictly required that auxiliary information is organised in variables named
as X1, X2, ... , Xm (there should be at least one of them) and the target variables
are denoted by Y1, Y2, ... , Yn. In addition, in case of sample data, a variable
named "WEIGHT’ must be present in the dataframe, containing the weigths
associated to each sampling unit

Value

A dataframe containing strata

Author(s)

Giulio Barcaroli

Examples
data(swissframe)
strata <- buildStrataDF (swissframe)
head(strata)
checkInput Checks the inputs to the package: dataframes "errors”, "strata" and
"sampling frame"
Description

non

This functions checks the internal structure of the different input dataframes ("errors", "strata" and
"sampling frame"), and also the correctness of the relationships among them.

Usage

checkInput(errors=NULL, strata=NULL, sampframe=NULL)

Arguments
errors Dataframe containing the precision levels expressed in terms of maximum ac-
ceptable coefficients of variation that estimates of target variables Y’s of the
survey must comply.
strata Dataframe containing the information related to strata.
sampframe Dataframe containing the information related to all the units belonging to the
population of interest.
Author(s)

Giulio Barcaroli

errors 5

Examples

library(SamplingStrata)

data(swisserrors)

data(swissstrata)

data(swissframe)
checkInput(swisserrors,swissstrata,swissframe)
checkInput(strata=swissstrata, sampframe=swissframe)
checkInput(strata=swissstrata)

errors Precision constraints (maximum CVs) as input for Bethel allocation

Description

Dataframe containing precision levels (expressed in terms of acceptable CV’s)

Usage

data(errors)

Format

The constraint data frame (errors) contains a row per each domain value with the following vari-
ables:

DOM Type of domain code (factor)

CV1 Planned coefficient of variation for first variable Y1 (numeric)
CVj Planned coefficient of variation for j-th variable Yj (numeric)
CVn Planned coefficient of variation for last variable Yn (numeric)

domainvalue Value of the domain to which the constraints refer (numeric)

Details

Note: the names of the variables must be the ones indicated above

Examples

data(errors)
errors

6 evalSolution

evalSolution Allows to evaluate the solution produced by the function ’optimizeS-
trata’ by selecting a number of samples from the frame with the op-
timal stratification, and calculating average CV'’s on the target vari-
ables Y’s together with differences between estimates and the values
of the parameters in the population.

Description

The user can indicate the number of samples that must be selected by the frame to which the optimal
stratification has been applied. The allocation is the one reported in the dataframe ’outstrata’. First,
the true values of the parameters are calculated from the frame. Then, for each sample the sampling
estimates are calculated, together with the differences between them and the true values of the
parameters. At the end, an estimate of the CV is produced for each target variable, in order to
compare them with the precision constraints set at the beginning of the optimization process. If the
flag *writeFiles’ is set to TRUE, boxplots of distribution of the CV’s in the different domains are
produced for each Y variable (cv.pdf’), together with boxplot of the distributions of differences
between estimates and values of the parameters in the population (’differences.pdf’).

Usage

evalSolution(frame,
outstrata,
nsampl=100,
writeFiles=FALSE)

Arguments
frame The frame to which the optimal stratification has been applied ('framenew’)
outstrata The new (aggregated) strata generated by the function ’optimizeStrata’
nsampl The number of sample to be drawn from the frame
writeFiles A flag to write in the work directory the outputs of the function

Value

A list containing (1) the vector of the solution and (2) the optimal aggregated strata

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)

solution <- optimizeStrata (
errors = swisserrors,

strata = swissstrata,

cens = NULL,

optimizeStrata 7

strcens = FALSE,
alldomains = TRUE,
dom = dominio,
initialStrata = nrow(swissstrata)/3,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 50,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
realAllocation = TRUE,
writeFiles = FALSE)
update sampling strata with new strata labels
#swissstrata <- swissstratal[swissstrata$DOM1 == dominio,]
newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)
update sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe,newstrata=newstrata,writeFile=TRUE)
samp <- selectSample(framenew,solution$aggr_strata,writeFiles=TRUE)
evaluate the current solution
results <- evalSolution(framenew, solution$aggr_strata, 100, writeFiles = TRUE)
boxplot(val ~ cv, data = results$coeff_var,
col = "orange"”,
main = "Distribution of CVs in the domains”,
xlab = "Variables Y",
ylab = "Value of CV")
diff <- read.csv("differences.csv")
numY <- sum(grepl("diff"”, colnames(diff)))
k <- ceiling(numY/4)
for (3 in 1:k) {
split.screen(c(2, 2))
for (i in 1:4) {
if (A+4x(J-1)<=numY) {
stmt <- paste("screen(", i, ")", sep = "")
eval(parse(text = stmt))
stmt <- paste("boxplot(diff”,i,"~dom,
data=diff,ylab=Differences,
xlab=Domain,col = orange)”,sep="")
eval (parse(text = stmt))
stmt <- paste("mtext(expression(Y"”, i , "), side=3, adj=0, cex=1.0, line=1)",
sep = "")
eval (parse(text = stmt))

}

End(Not run)

optimizeStrata Best stratification of a sampling frame for multipurpose surveys

Description

This function runs a set of other functions to optimise the stratification of a sampling frame

Usage

optimizeStrata(

errors ,
strata ,
cens = NULL,

optimizeStrata

strcens = FALSE,

alldomains =
dom = NULL,
initialStrata

addStrataFactor
minnumstr = 2,

iter = 20,
pops = 20,
mut_chance =
elitism_rate

TRUE,

nrow(strata),
= 0.01,

05,
0.2,

highvalue = 1e+08,

suggestions =

realAllocation

NULL,
= FALSE,

writeFiles = FALSE,

showPlot = TRUE

)

Arguments

errors

strata

cens

strcens

alldomains

dom

initialStrata

addStrataFactor

minnumstr

iter

This is the (mandatory) dataframe containing the precision levels expressed in
terms of Coefficients of Variation that estimates on target variables Y’s of the
survey must comply

This is the (mandatory) dataframe containing the information related to "atomic"
strata, i.e. the strata obtained by the Cartesian product of all auxiliary variables
X’s. Information concerns the identifiability of strata (values of X’s) and vari-
ability of Y’s (for each Y, mean and standard error in strata)

This the (optional) dataframe containing the takeall strata, those strata whose
units must be selected in whatever sample. It has same structure than "strata"
dataframe

Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE

Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains (default is TRUE). If it is set to FALSE, then a value must be given to
parameter ’dom’

Indicates the domain on which the optimization must be carried. It is an inte-
ger value that has to be internal to the interval (1 <—> number of domains). If
“alldomains’ is set to TRUE, it is ignored

This is the initial limit on the number of strata for each solution. Default is 3000

This parameter indicates the probability that at each mutation the number of
strata may increase with respect to the current value. Default is 0.01 (1

Indicates the minimum number of units that must be allocated in each stratum.
Default is 2

Indicated the maximum number of iterations (= generations) of the genetic al-
gorithm. Default is 20

optimizeStrata 9

pops The dimension of each generations in terms of individuals. Default is 50

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is 0.05

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20

highvalue Parameter for genetic algorithm. Not to be changed

suggestions Optional parameter for genetic algorithm that indicates one possible solution
(maybe from previous runs) that will be introduced in the initial population.
Default is NULL.

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation
is based on REAL values

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is "FALSE".

showPlot Indicates if the plot showing the trend in the value of the objective function has
to be shown or not. Default is "TRUE".

Value

A list containing (1) the vector of the solution and (2) the optimal aggregated strata

Author(s)

Giulio Barcaroli

Examples

#
This is a toy example, and can be run
#

library(SamplingStrata)
data(errors)
data(strata)
optimisation of sampling strata
solution <- optimizeStrata (
errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 30,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
writeFile = FALSE,
showPlot = TRUE)

10 plotSamprate

sum(ceiling(solution$aggr_strata$sSOLUZ))
head(solution$aggr_strata)

#
The following example is realistic, but is time consuming
#
Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,
cens = NULL,
strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 60,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
writeFile = FALSE,
showPlot = TRUE)
sum(ceiling(solution$aggr_strata$SOLUZ))
head(solution$aggr_strata)

End(Not run)

plotSamprate Plotting sampling rates in the different strata for each domain in the
solution.

Description

Once the optimization step has been carried out, by applying this function it is possible to obtain
the visualization of the proportion of sampling units in the different strata for each domain in the
obtained solution.

Usage

plotSamprate(solution, dom)

Arguments
solution Solution obtained by executing optimizeStrata
dom Identification of the domain

Value

Plot

selectSample 11

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)

optimisation of sampling strata
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,

cens = NULL,
strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 60,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
writeFiles = FALSE)
plot of the sampling rates in strata of domain 1
plotSamprate(solution, 1)

End(Not run)

selectSample Selection of a stratified sample from the frame with srswor method

Description

Once optimal stratification has been obtained (in the dataframe ’outstrata’), and a new frame has
been built by assigning to the units of the old one the new stratum labels (by means of "update-
Frame" function), it is possible to select a stratified sample from the frame with the srswor method.
The result of the execution of "selectSample" function is a dataframe containing selected units,
with the probabilities of inclusion. It is possible to output this dataframe in a .csv file. One more
.csv file is produced ("sampling check"), containing coeherence checks between (a) population in
frame strata (b) population in optimised strata (c) planned units to be selected in optimised strata
(d) actually selected units (e) sum of weights in each stratum

Usage

selectSample(frame, outstrata, writeFiles = FALSE,verbatim=TRUE)

Arguments
frame This is the (mandatory) dataframe containing the sampling frame, as it has been
modified by the execution of the "updateFrame" function. Name of stratum
variable must be ’strato’.
outstrata This is the (mandatory) dataframe containing the information related to resulting

stratification obtained by the execution of "optimizeStrata" function. Name of
stratum variable must be ’strato’.

12 strata

writeFiles Indicates if at the end of the processing the resulting strata will be outputted in
a delimited file. Default is "FALSE".
verbatim Indicates if information on the drawn sample must be printed or not. Default is
"TRUE".
Value

A dataframe containing the sample

Author(s)

Giulio Barcaroli with contribution from Diego Zardetto

Examples

#
The following example is realistic, but is time consuming
#
Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,

strata = swissstrata,

cens = NULL,

strcens = FALSE,

initialStrata = 3000,

addStrataFactor = 0.01,

minnumstr = 2,

iter = 60,

pops = 20,

mut_chance = 0.05,

elitism_rate = 0.2,

highvalue = 100000000,

suggestions = NULL,
writeFiles = FALSE)
updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution)
updating sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe,newstrata=newstrata)
selection of sample
sample <- selectSample(frame=framenew,outstrata=solution$aggr_strata)
head(sample)

End(Not run)

strata Dataframe containing information on strata in the frame

Swisserrors

Description

Dataframe containing information on strata in the frame

Usage

data(strata)

Format

The strata data frame (strata) contains a row per stratum with the following variables:

stratum Identifier of the stratum (numeric)

N Number of population units in the stratum (numeric)

X1 Value of first auxiliary variable X1 in the stratum (factor)

Xi Value of i-th auxiliary variable Xi in the stratum (factor)

Xk Value of last auxiliary variable Xk in the stratum (factor)

M1 Mean in the stratum of the first variable Y1 (numeric)

Mj Mean in the stratum of the j-th variable Yt (numeric)

Mn Mean in the stratum of the last variable Y (numeric)

S1 Standard deviation in the stratum of the first variable Y (numeric)
Sj Standard deviation in the stratum of the j-th variable Yt (numeric)
Sn Standard deviation in the stratum of the last variable Y (numeric)
cens Flag (1 indicates a take all straum, 0 a sampling stratum) (numeric) Default = 0
cost Cost per interview in each stratum. Default = 1 (numeric)

DOM1 Value of domain to which the stratum belongs (factor or numeric)

Details

Note: the names of the variables must be the ones indicated above

Examples

data(strata)
head(strata)

13

swisserrors Precision constraints (maximum CVs) as input for Bethel allocation

Description

Dataframe containing precision levels (expressed in terms of acceptable CV’s)

Usage

data(errors)

14 swissframe

Format

The constraint data frame (swisserrors) contains a row per each domain value with the following
variables:
DOM Type of domain code (factor)

CV1 Planned coefficient of variation for first variable Y1 (number of men and women aged be-
tween 0 and 19) (numeric)

CV2 Planned coefficient of variation for second variable Y2 (number of men and women aged
between 20 and 39) (numeric)

CV3 Planned coefficient of variation for third variable Y3 (number of men and women aged be-
tween 40 and 64) (numeric)

CV4 Planned coefficient of variation for forth variable Y4 (number of men and women aged be-
tween 65 and over) (numeric)

domainvalue Value of the domain to which the constraints refer (numeric)

Examples

data(swisserrors)
swisserrors

swissframe Dataframe containing information on all units in the population of ref-
erence that can be considered as the final sampling unit (this example
is related to Swiss municipalities)

Description

Dataframe containing information on all municipalities in Swiss (it is a derivation of dataframe
"swissmunicipalities" in "sampling" package)

Usage

data(swissframe)

Format

The "swissframe" dataframe contains a row per each Swiss municipality with the following vari-
ables:

progr Progressive associated to the frame unit (numeric)

id Name of the frame unit (character)

X1 Classes of total population in the municipality (factor with 18 values)

X2 Classes of wood area in the municipality (factor with 3 values)

X3 Classes of area under cultivation in the municipality (factor with 3 values)

X4 Classes of mountain pasture area in the municipality (factor with 3 values)

X5 Classes of area with buildings in the municipality (factor with 3 values)

X6 Classes of industrial area in the municipality (factor with 3 values)

Y1 Number of men and women aged between 0 and 19 (numeric)

swissmunicipalities

Y2 Number of men and women aged between 20 and 39 (numeric)

Y3 Number of men and women aged between 40 and 64 (numeric)

Y4 Number of men and women aged between 65 and over (numeric)

domainvalue Value of domain to which the municipality belongs (factor or numeric)

Examples

#data(swissframe)
#thead(strata)

swissmunicipalities The Swiss municipalities population

Description

This population provides information about the Swiss municipalities in 2003.

Usage

data(swissmunicipalities)

Format
A data frame with 2896 observations on the following 22 variables:

CT Swiss canton.

REG Swiss region.

COM municipality number.

Nom municipality name.

HApoly municipality area.

Surfacesbois wood area.

Surfacescult area under cultivation.

Alp mountain pasture area.

Airbat area with buildings.

Airind industrial area.

POOBMTOT number of men.

POOBWTOT number of women.

Pop020 number of men and women aged between 0 and 19.
Pop2040 number of men and women aged between 20 and 39.
Pop4065 number of men and women aged between 40 and 64.
Pop65P number of men and women aged between 65 and over.
HOOPTOT number of households.

HO0P01 number of households with 1 person.

HO0P02 number of households with 2 persons.

HO00P03 number of households with 3 persons.

HO0P04 number of households with 4 persons.

POPTOT total population.

16 swissstrata

Source

Swiss Federal Statistical Office.

Examples

data(swissmunicipalities)
hist(swissmunicipalities$POPTOT)

swissstrata Dataframe containing information on strata in the swiss municipali-
ties frame

Description

Dataframe containing information on strata in the swiss municipalities frame

Usage

data(swissframe)

Format
The "swissstrata" dataframe contains a row per stratum with the following variables:

STRATO Identifier of the stratum (character)

N Number of population units in the stratum (numeric)

X1 Classes of total population in the municipality (factor with 18 values)

X2 Classes of wood area in the municipality (factor with 3 values)

X3 Classes of area under cultivation in the municipality (factor with 3 values)

X4 Classes of mountain pasture area in the municipality (factor with 3 values)

X5 Classes of area with buildings in the municipality (factor with 3 values)

X6 Classes of industrial area in the municipality (factor with 3 values)

M1 Mean in the stratum of Y1 (number of men and women aged between 0 and 19)(numeric)
M2 Mean in the stratum of Y2 (number of men and women aged between 20 and 39) (numeric)
M3 Mean in the stratum of Y3 (number of men and women aged between 40 and 64) (numeric)
M4 Mean in the stratum of Y4 (number of men and women aged between 64 and over) (numeric)

S1 Standard deviation in the stratum of Y1 (number of men and women aged between 0 and 19)(nu-
meric)

S2 Standard deviation in the stratum of Y2 (number of men and women aged between 20 and 39)
(numeric)

S3 Standard deviation in the stratum of Y3 (number of men and women aged between 40 and 64)
(numeric)

S4 Standard deviation in the stratum of Y4 (number of men and women aged between 64 and over)
(numeric)

cens Flag (1 indicates a take all straum, 0 a sampling stratum) (numeric) Default = 0
cost Cost per interview in each stratum. Default = 1 (numeric)

DOM1 Value of domain to which the stratum belongs Default = 1 (factor or numeric)

tuneParameters 17

Examples

data(swissstrata)
head(swissstrata)

tuneParameters Execution and compared evaluation of optimization runs

Description

This function allows to execute a number of optimization runs, varying in a controlled way the
values of the parameters, in order to find their most suitable values. by comparing the resulting
solutions. It can be applied only to a given domain per time. Most parameters of this function are the
same than those of the function *optimizeStrata’, but they are given in a vectorial format. The length
of each vector is given by the number of optimizations to be run: it is therefore possible to define
different combination of values of the parameters for each execution of *optimizeStrata’. After each
optimization run, from the corrisponding optimized frame a given number of samples are drawn.
For each of them, the estimates of the target variables Y’s are computed ("precision"), together
with the associated coefficients of variations, and the absolute differences between the values of
the estimates and the true values in the population ("bias"). Information on the distribution of bias
(differences) and precision (CV’s) are outputted, and also boxplots for each of them are produced,
in order to permit a compared evaluation of the different solutions found in the different runs. As
the optimal solution is stored for each run, after the evaluation it is possible to use it directly, or as
a "suggestion" for a new optimization with more iterations (in order to improve it).

Usage

tuneParameters (
noptim,

nsampl,

frame,

errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,
alldomains = FALSE,
dom = 1,
initialStrata,
addStrataFactor,
minnumstr,

iter,

pops,
mut_chance,
elitism_rate

)

Arguments

noptim Number of optimization runs to be performed

nsampl Number of samples to be drawn from the optimized population frame after each
optimization

18

tuneParameters

frame The (mandatory) dataframe containing the sampling frame

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of Coefficients of Variation that estimates on target variables Y’s of the
survey must comply

strata This is the (mandatory) dataframe containing the information related to "atomic"
strata, i.e. the strata obtained by the Cartesian product of all auxiliary variables
X’s. Information concerns the identifiability of strata (values of X’s) and vari-
ability of Y’s (for each Y, mean and standard error in strata)

cens This the (optional) dataframe containing the takeall strata, those strata whose
units must be selected in whatever sample. It has same structure than "strata"
dataframe

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all

domains. It must be left to its default (FALSE)

dom Indicates the domain on which the optimization runs must be performed. It is an
integer value that has to be internal to the interval (1 <—> number of domains).
It is mandatory, if not indicated, the default (1) is taken.

initialStrata This is the initial limit on the number of strata for each solution. Default is 3000.
This parameter has to be given in a vectorial format, whose length is given by
the number of different optimisations (= value of parameter *noptim’)

addStrataFactor
This parameter indicates the probability that at each mutation the number of
strata may increase with respect to the current value. Default is 0.01 (1 This
parameter has to be given in a vectorial format, whose length is given by the
number of different optimisations (= value of parameter *noptim’)

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2. This parameter has to be given in a vectorial format, whose length is
given by the number of different optimisations (= value of parameter 'noptim’)

iter Indicated the maximum number of iterations (= generations) of the genetic algo-
rithm. Default is 20. This parameter has to be given in a vectorial format, whose
length is given by the number of different optimisations (= value of parameter
noptim’)

pops The dimension of each generations in terms of individuals. Default is 50. This
parameter has to be given in a vectorial format, whose length is given by the
number of different optimisations (= value of parameter 'noptim’)

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is 0.05. This parameter has to be given in a vectorial
format, whose length is given by the number of different optimisations (= value
of parameter 'noptim”)

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20 This parameter has to be given in a
vectorial format, whose length is given by the number of different optimisations
(= value of parameter 'noptim’)

updateFrame

Author(s)

Giulio Barcaroli

Examples

#
Not run:

data setting

library(SamplingStrata)

data(swissstrata)
data(swisserrors)
data(swissframe)

As this function can be applied only to a given domain per time,
we select the first domain

frame <- swissframe[swissframe$domainvalue == 1,]

strata <- swissstratalswissstrata$DOM1 == 1,]

errors <- swisserrors[swisserrors$domainvalue == 1,]

__

parameters setting

noptim <- 8 # Number of runs

nsampl <- 100 # Number of samples to be drawn after each optimization

initialStrata <- ceiling(c(1:noptim)*0.1x(nrow(strata))) # Number of initial strata
addStrataFactor <- rep(0.01,noptim) # Rate for increasing initial strata

minnumstr <- rep(2,noptim) # Minimum number of units per stratum

iter <- rep(200,noptim) # Number of iterations for each optimization

pops <- rep(20,noptim) # Number of solutions for each iteration

mut_chance <- rep(0.004,noptim) # Mutation chance

elitism_rate <- rep(0.2,noptim) # Elitism rate

tuneParameters (

noptim,

nsampl,

frame,

errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,

alldomains = FALSE,

dom = 1,
initialStrata,
addStrataFactor,
minnumstr,

iter,

pops,
mut_chance,
elitism_rate

)

End(Not run)

19

updateFrame

Updates the initial frame on the basis of the optimized stratification

20 updateFrame

Description

Once optimal stratification has been obtained, and new labels have been attributed to initial atomic
strata ("newstrata"), it is important to report the new classification of units in the sampling frame by
attributing new strata labels to each unit. By executing this function, a new frame will be obtained
with the same structure of the old, but with the addition of a new stratum label. The initial frame
must contain a variable named domainvalue’ that indicates the same values of the domain that has
been used with the *optimizeStrata’ function. If no domains have been defined, this variable will
contains all 1’s, but it must exist

Usage

updateFrame(frame, newstrata, writeFiles = FALSE)

Arguments
frame This is the (mandatory) dataframe containing the sampling frame.
newstrata This is the (mandatory) dataframe containing the information related to the op-
timisation applied to initial stratification (new labels applied to atomic strata). It
is produced by executing the "updateStrata" function.
writeFiles Flag to write or not the new sampling frame into the working directory. Default
is "FALSE"
Value

A dataframe containing the frame

Author(s)

Giulio Barcaroli

Examples

#

The following example is realistic, but is time consuming
#

Not run:

library(SamplingStrata)

data(swisserrors)

data(swissstrata)

optimisation of sampling strata
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,

cens = NULL,

strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,

iter = 60,

pops = 20,

mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,

updateStrata 21

writeFiles = FALSE)

updating sampling strata with new strata labels

newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)

updating sampling frame with new strata labels

data(swissframe)

framenew <- updateFrame(frame=swissframe, newstrata=newstrata, writeFiles = TRUE)

End(Not run)

updateStrata Assigns new labels to atomic strata on the basis of the optimized ag-
gregated strata

Description

Once optimal stratification has been obtained ("outstrata’), then we need to attribute new strata
labels to each atomic stratum. By executing this function, a new dataframe "newstrata" will be
obtained with the same structure of the old, ("strata") but with the addition of a new stratum label.
By indicating "YES" to "writeFile" parameter, the dataframe "newstrata" will be written to a delim-
ited file ("newstrata.txt"). Also a second delimited file ("strata_aggregation.txt") will be outputted,
containing the indication of the relations bewteen atomic and aggregated strata.

Usage

updateStrata(strata, solution, writeFiles = FALSE)

Arguments
strata This is the (mandatory) dataframe containing the information related to the
atomic strata to which the optimisation has been applied to.
solution List obtained by the execution of the "optimizeStrata" function. The first ele-
ment of the list is the vector of the indices corresponding to the optimal solution.
writeFiles Indicates if at the end of the processing the resulting strata will be outputted in
a delimited file. Default is "FALSE".
Value

A dataframe containing the strata

Author(s)

Giulio Barcaroli

Examples

#
This is a toy example, and can be run
#

library(SamplingStrata)
data(errors)
data(strata)

22 var.bin

optimisation of sampling strata
solution <- optimizeStrata (
errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 30,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
writeFiles = FALSE)
updating sampling strata with new strata labels
newstrata <- updateStrata(strata, solution)

#
The following example is realistic, but is time consuming
#
Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,
cens = NULL,
strcens = FALSE,
initialStrata = 3000,
addStrataFactor = 0.01,
minnumstr = 2,
iter = 60,
pops = 20,
mut_chance = 0.05,
elitism_rate = 0.2,
highvalue = 100000000,
suggestions = NULL,
writeFiles = FALSE)
updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution)

End(Not run)

var.bin Allows to transform a continuous variable into a categorical ordinal
one by applying a modified version of the k-means clustering function
in the ’stats’ package.

Description

The optimization of a frame stratification is applicable only in presence of all categorical auxiliary
variables in the frame. If one or more continuous auxiliary variables are in the frame, it is necessary

var.bin 23

to pre-process in order to convert them into categorical (ordinal) variables. The applied method is
the "k-means" clustering method contained in the in "stats" package. This function ensures that the
final result is in an ordered categorical variable.

Usage
var.bin(x,
bins=3,

iter.max=100)

Arguments
X Continuous variable to be transformed into a categorical one
bins Number of values of the resulting categorical variable
iter.max Maximum number of iterations of the clustering algorithm
Value

Binned variable

Examples

library(SamplingStrata)

data(swissmunicipalities)

data(swissframe)

swissframe$X1 <- var.bin(swissmunicipalities$POPTOT,bins = 18)
table(swissframe$X1)

tapply(swissmunicipalities$POPTOT, swissframe$X1,mean)

Index

*Topic datasets
errors, 5
strata, 12
swisserrors, 13
swissframe, 14
swissmunicipalities, 15
swissstrata, 16

xTopic SUI'vey
bethel, 2
buildStrataDF, 3
checkInput, 4
evalSolution, 6
optimizeStrata, 7
plotSamprate, 10
selectSample, 11
tuneParameters, 17
updateFrame, 19
updateStrata, 21
var.bin, 22

bethel, 2
buildStrataDF, 3

checkInput, 4

errors, 5
evalSolution, 6

optimizeStrata, 7
plotSamprate, 10

selectSample, 11
strata, 12
swisserrors, 13
swissframe, 14
swissmunicipalities, 15
swissstrata, 16

tuneParameters, 17

updateFrame, 19
updateStrata, 21

var.bin, 22

24

	bethel
	buildStrataDF
	checkInput
	errors
	evalSolution
	optimizeStrata
	plotSamprate
	selectSample
	strata
	swisserrors
	swissframe
	swissmunicipalities
	swissstrata
	tuneParameters
	updateFrame
	updateStrata
	var.bin
	Index

