Corporate performances and market selection. Some comparative evidence

Giulio Bottazzi^{*a*} Giovanni Dosi^{*a*} Nadia Jacoby^{*b*} Angelo Secchi^{*c*} Federico Tamagni^{*a*}

^a LEM, Scuola Superiore Sant'Anna

^b University Paris I-Panthéon-Sorbonne

^c University Paris I-Panthéon-Sorbonne and DSE, University of Pisa

- Market efficiency: underlying selection process which operates on heterogeneous producers, via reallocation of market shares from the least to the more "efficient" business units
- Definition of fitness: productivity, profitability, growth. Which dimension is the first driver?
- Shortcomings Sectoral decomposition of productivity dynamics or analysis of entrant and exiting firms: only one dimension considered.

- Market efficiency: underlying selection process which operates on heterogeneous producers, via reallocation of market shares from the least to the more "efficient" business units
- Definition of fitness: productivity, profitability, growth. Which dimension is the first driver?
- Shortcomings Sectoral decomposition of productivity dynamics or analysis of entrant and exiting firms: only one dimension considered.

- Market efficiency: underlying selection process which operates on heterogeneous producers, via reallocation of market shares from the least to the more "efficient" business units
- Definition of fitness: productivity, profitability, growth. Which dimension is the first driver?
- Shortcomings Sectoral decomposition of productivity dynamics or analysis of entrant and exiting firms: only one dimension considered.

- A first issue regards the possibility that productivity is not the only and the proper fitness measure (cfr. Foster et al., 2008)
- We explore existence and asses the strength of the link between PRODUCTIVITY and PROFITABILITY.
- This naturally leads to the productivity-growth and profitability-growth links

- A first issue regards the possibility that productivity is not the only and the proper fitness measure (cfr. Foster et al., 2008)
- We explore existence and asses the strength of the link between PRODUCTIVITY and PROFITABILITY.
- This naturally leads to the productivity-growth and profitability-growth links

- A first issue regards the possibility that productivity is not the only and the proper fitness measure (cfr. Foster et al., 2008)
- We explore existence and asses the strength of the link between PRODUCTIVITY and PROFITABILITY.
- This naturally leads to the productivity-growth and profitability-growth links

2 Non-parametric unconditional analyses

A 🖓 🕨 🔺

Micro.3: integrated data bank including firms with 20 or more employees over the time period 1989 - 2004. It is based on three different sources

- census of all the Italian firms with more than 20 employees before the 1997 and with more than 100 employees in the period 1998 - 2004
- representative sample of firms with a number of employees included in the range 20 99 rotating every five years
- balance-sheet provided by CEBI, the Italian official member of the European Committee of Central Balance-Sheet Data Offices

Micro.3: integrated data bank including firms with 20 or more employees over the time period 1989 - 2004. It is based on three different sources

- census of all the Italian firms with more than 20 employees before the 1997 and with more than 100 employees in the period 1998 - 2004
- representative sample of firms with a number of employees included in the range 20 99 rotating every five years
- balance-sheet provided by CEBI, the Italian official member of the European Committee of Central Balance-Sheet Data Offices

Micro.3: integrated data bank including firms with 20 or more employees over the time period 1989 - 2004. It is based on three different sources

- census of all the Italian firms with more than 20 employees before the 1997 and with more than 100 employees in the period 1998 - 2004
- representative sample of firms with a number of employees included in the range 20 99 rotating every five years
- balance-sheet provided by CEBI, the Italian official member of the European Committee of Central Balance-Sheet Data Offices

Micro.3: integrated data bank including firms with 20 or more employees over the time period 1989 - 2004. It is based on three different sources

- census of all the Italian firms with more than 20 employees before the 1997 and with more than 100 employees in the period 1998 - 2004
- representative sample of firms with a number of employees included in the range 20 99 rotating every five years
- balance-sheet provided by CEBI, the Italian official member of the European Committee of Central Balance-Sheet Data Offices

Micro.3: integrated data bank including firms with 20 or more employees over the time period 1989 - 2004. It is based on three different sources

- census of all the Italian firms with more than 20 employees before the 1997 and with more than 100 employees in the period 1998 - 2004
- representative sample of firms with a number of employees included in the range 20 99 rotating every five years
- balance-sheet provided by CEBI, the Italian official member of the European Committee of Central Balance-Sheet Data Offices

Database time span

REAL GDP (billions of Euro)

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶ ● ④ ● ●

<ロト < (回) < (u) < (

Sample:

- we select 3-Digit sectors with at least 100 firms in each year
- we apply 3-Digit output deflators

Main variables:

- TS =Total Sales
- L = Number of Employees
- VA = Value Added
- GOM = Gross Operative Margin (VA-Labour Costs)

Measures of performance

We define growth, profitability and productivity as

• Productivity

$$\Pi_t = \frac{VA_t}{L_t} \tag{1}$$

• Profitability

$$P_t = \frac{GOM_t}{TS_t} \tag{2}$$

• Growth

$$G_t = \Delta \log(TS_t) \tag{3}$$

2 Non-parametric unconditional analyses

Relation $\Pi \sim \text{Growth}$

▲ロト▲撮と▲差と▲差と 差 のなぐ

Binned Statistics

Simple statistics of dependent variable by quantile of independent variable. For pairs (X_i, Y_i)

 $S[Y_i | X_i \in \text{bin}] \quad S = E, V, \dots$

Account for noise in both variables. Let

$$Y_i = f(X_i) + \epsilon_i \quad ,$$

if $X_i = \bar{X} + \eta_i$ and $\eta_i \ll \bar{X}$ then

$$Y_i = f(\bar{X}) + f'(\bar{X})\eta_i + \epsilon_i$$

and hence

$$\begin{split} E[\ Y_i \ | \ X_i \in \ \text{bin} \] &= f(\bar{X}) \\ V[\ Y_i \ | \ X_i \in \ \text{bin} \] &= f'^2 \sigma_{\eta}^2 + \sigma_{\epsilon}^2 \quad . \end{split}$$

▲ロト▲聞ト▲臣ト▲臣ト 臣 のQの

Relation $\Pi \sim \text{Growth}$

Kernel Regresssion

- Generalization of Binned Statistics: smooth weighting of observation pairs
- From the definition of Conditional Expectation:

$$E[Y \mid X] = \int dY \ YP(Y \mid X) = \int dY \ Y\frac{P(Y,X)}{P(X)}$$

• Using the "plug-in" principle: $P \rightarrow \hat{P}$

$$E[Y \mid X] = \int dY \; Y \frac{\sum_{i} K\left(\frac{Y - Y_{i}}{h_{Y}}, \frac{X - X_{i}}{h_{X}}\right)}{\sum_{i} K\left(\frac{X - X_{i}}{h_{X}}\right)} = \frac{\sum_{i} Y_{i} K\left(\frac{X - X_{i}}{h_{X}}\right)}{\sum_{i} K\left(\frac{X - X_{i}}{h_{X}}\right)}$$

with symmetric kernel function $K(\cdot)$.

Relation $\Pi \sim \text{Growth}$

Relation $P \sim Growth$

▲ロト▲聞と▲臣と▲臣と 臣 のなぐ

Relation $P \sim Growth$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQで

Relation $P \sim Growth$

・ロト・西ト・西ト・西・ うんぐ

▲ロト▲聞と▲臣と▲臣と 臣 のなぐ

▲ロト▲聞と▲臣と▲臣と 臣 のなぐ

Relationships: summing up

2 Non-parametric unconditional analyses

(日)

It is necessary to consider omitted firm-specific variables.

We estimate pairwise regressions based on different sets of specifications

Estimates are performed separately by 3-Digit industries.

Contemporaneous relations

Baseline model is a pairwise regression

$$Y_{i,t} = c + u_i + \alpha X_{i,t} + \epsilon_{i,t} \quad , \tag{4}$$

where *Y* and *X* can be *G*, Π_t and *P*_t respectively, and we include a full set of year dummies to control for common time effects.

Relative strength of the relationships via

$$S_{Y,X}^2 = \left(\hat{\alpha}\frac{\sigma_X}{\sigma_Y}\right)^2 \quad , \tag{5}$$

・ロト ・母ト ・ヨト ・ヨト ・ヨー わへで

where $\hat{\alpha}$ is the Fixed Effects estimate of α , and σ stands for the standard deviation variance of the two variables included in each regression.

Note: S_{YX}^2 has the nature of a standard R^2 measure of fitness, computed ignoring the terms due to annual dummies and firm-specific characteristics

		ITALY			1	FRANCE		
NACE	Sector	$\hat{\alpha}$	S_{YX}^2	R^2	$\hat{\alpha}$	S_{YX}^2	R^2	
171	Preparation and spinning of textiles	0.0045*	0.0936	0 2561	0.0004*	0.0049	0 1907	
172	Textiles weaving	0.0023*	0.0623	0.2916	0.0003*	0.0046	0 2415	
175	Carnets rugs and other textiles	0.0039*	0.2383	0.3585	0.0003*	0.0033	0 1946	
182	Wearing annarel	0.0052*	0 1543	0.3269	0.0028*	0.0000	0.0601	
193	Footwear	0.0086*	0.2048	0.2859	0.0100*	0.0000	0.1178	
212	Articles of paper and paperboard	0.0021*	0.0632	0.2412	0.0026*	0.0388	0.1973	
221	Publishing	0.0012*	0.0746	0.3028	0.0005*	0.0640	0.2113	
222	Printing	0.0027*	0.1063	0.3688	0.0062*	0.1169	0.1975	
241	Production of basic chemicals	0.0006*	0.0158	0.1255	0.0009*	0.1056	0.1470	
244	Pharma., med. chemicals, botanical prod	0.0012*	0.0310	0.3863	0.0004*	0.0570	0.2306	
246	Other chemical products	0.0023*	0.1166	0.3168	0.0022*	0.1367	0.2317	
252	Plastic products	0.0032*	0.1200	0.2789	0.0014*	0.0245	0.1711	
266	Concrete, plaster and cement	0.0025*	0.0851	0.3158	0.0011*	0.0210	0.1857	
281	Structural metal products	0.0060*	0.1183	0.3131	0.0096*	0.1319	0.2179	
284	Forging, pressing, stamping, of metal	0.0059*	0.2009	0.2812	0.0080*	0.1942	0.2391	
291	Machinery for prod. & use of mech. power	0.0035*	0.0942	0.2823	0.0052*	0.1671	0.2203	
292	Other general purpose machinery	0.0052*	0.1613	0.2626	0.0083*	0.1885	0.1961	
294	Machine tools	0.0062*	0.1525	0.3340	0.0099*	0.1932	0.3316	
295	Other special purpose machinery	0.0061*	0.1553	0.2389	0.0087*	0.1948	0.2072	
311	Electric motors, generators and transform	0.0040*	0.1147	0.3973	0.0097*	0.1518	0.2434	
361	Furniture	0.0057*	0.1331	0.2826	0.0119*	0.2633	0.2604	
	S_{YX}^2 Statistics	AVG	MIN	MAX	AVG	MIN	MAX	
		0.1186	0.0158	0.2433	0.1268	0.0001	0.2633	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シ۹ペ

		ITALY			1	FRANCE			
NACE	Sector	$\hat{\alpha}$	S_{YX}^2	R^2	$\hat{\alpha}$	S_{YX}^2	R^2		
171	Preparation and spinning of textiles	0.0033*	0 3358	0 7226	0.0004*	0.0554	0 4612		
172	Textiles weaving	0.0023*	0 3378	0 7294	0.0002*	0.0269	0 5069		
175	Carnets rugs and other textiles	0.0031*	0.5200	0 7122	0.0002*	0.0192	0 5238		
182	Wearing apparel	0.0033*	0.0570	0 4543	0.0011*	0 1502	0.5231		
193	Footwear	0.0043*	0.3193	0.5284	0.0035*	0.2313	0.6318		
212	Articles of paper and paperboard	0.0024*	0.5459	0.7218	0.0019*	0.2481	0.6614		
221	Publishing	0.0018*	0.3503	0.6948	0.0001*	0.0482	0.6707		
222	Printing	0.0026*	0.3479	0.6672	0.0026*	0.3904	0.6153		
241	Production of basic chemicals	0.0006*	0.1053	0.5202	0.0004*	0.1312	0.7240		
244	Pharma., med. chemicals, botanical prod	0.0011*	0.2682	0.5029	0.0002*	0.0275	0.7751		
246	Other chemical products	0.0019*	0.3325	0.4788	0.0009*	0.2170	0.6271		
252	Plastic products	0.0023*	0.3510	0.7132	0.0009*	0.1378	0.5832		
266	Concrete, plaster and cement	0.0007*	0.0584	0.6106	0.0005*	0.0551	0.6049		
281	Structural metal products	0.0033*	0.3410	0.6435	0.0042*	0.6292	0.7275		
284	Forging, pressing, stamping, of metal	0.0034*	0.4029	0.5412	0.0040*	0.5303	0.7160		
291	Machinery for prod. & use of mech. power	0.0031*	0.3929	0.6945	0.0033*	0.5360	0.7326		
292	Other general purpose machinery	0.0029*	0.4341	0.7503	0.0041*	0.6293	0.7198		
294	Machine tools	0.0024*	0.3433	0.6764	0.0048*	0.6061	0.7145		
295	Other special purpose machinery	0.0035*	0.5164	0.6621	0.0049*	0.6817	0.7104		
311	Electric motors, generators and transform	0.0029*	0.4990	0.7598	0.0051*	0.4939	0.7714		
361	Furniture	0.0035*	0.4313	0.6371	0.0056*	0.6517	0.7337		
	S_{YX}^2 Statistics	AVG	MIN	MAX	AVG	MIN	MAX		
		0.3471	0.0046	0.5588	0.4172	0.0060	0.6753		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シ۹ペ

		ITALY			1	FRANCE		
NACE	Sector	$\hat{\alpha}$	S_{YX}^2	R^2	$\hat{\alpha}$	S_{YX}^2	R^2	
171	Preparation and spinning of textiles	0.6340*	0.0545	0.2449	0.7440*	0.0923	0.2546	
172	Textiles weaving	0.5265*	0.0478	0.2943	1.0546*	0.0923	0.2890	
175	Carpets, rugs and other textiles	0.4540*	0.0553	0.3291	1.1378*	0.1048	0.2419	
182	Wearing apparel	0.1096*	0.0147	0.3138	0.5653*	0.0757	0.2550	
193	Footwear	0.8679*	0.1056	0.2997	1.3384*	0.1159	0.2207	
212	Articles of paper and paperboard	0.7236*	0.0747	0.2582	0.5924*	0.0318	0.1946	
221	Publishing	0.1706*	0.0121	0.2939	0.0429*	0.0068	0.1875	
222	Printing	0.6643*	0.1376	0.3542	0.7332*	0.0438	0.1695	
241	Production of basic chemicals	1.4128*	0.3470	0.3491	0.5441*	0.1165	0.1627	
244	Pharma., med. chemicals, botanical prod	1.0134*	0.1213	0.4519	0.3796*	0.0829	0.2632	
246	Other chemical products	0.8846*	0.2527	0.4737	0.6959*	0.0873	0.2203	
252	Plastic products	0.8717*	0.1263	0.2904	0.5802*	0.0285	0.1761	
266	Concrete, plaster and cement	0.4693*	0.0200	0.2790	0.8573*	0.0627	0.2035	
281	Structural metal products	0.8370*	0.0684	0.3142	1.1263*	0.0544	0.1998	
284	Forging, pressing, stamping, of metal	0.8923*	0.1239	0.2989	0.9334*	0.0926	0.2110	
291	Machinery for prod. & use of mech. power	0.8954*	0.1487	0.3153	0.8816*	0.0979	0.2170	
292	Other general purpose machinery	0.8271*	0.0701	0.2553	1.0287*	0.0832	0.1678	
294	Machine tools	0.6543*	0.0382	0.2998	1.1168*	0.1029	0.3195	
295	Other special purpose machinery	0.9698*	0.0828	0.2307	1.0194*	0.0995	0.1849	
311	Electric motors, generators and transform	0.7281*	0.0628	0.3965	1.0876*	0.1020	0.2356	
361	Furniture	0.6915*	0.0546	0.2846	1.0099*	0.0960	0.2312	
	S_{YX}^2 Statistics	AVG	MIN	MAX	AVG	MIN	MAX	
		0.1032	0.0095	0.3470	0.0699	0.0000	0.1388	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シ۹ペ

Results confirm conclusions from non-parametric analysis:

- Productivity is robustly associated with Profitability
- Weak link between Productivity and Growth
- Weak link between Profitability and Growth

The explanatory power of the economic regressor considered tends to be much lower than the one associated with the unobserved idiosyncratic characteristics of the firm.

No significant variations across 3-Digit industries. Distribution of estimated S_{YX}^2 coefficients do not differ across classes identified by taxonomies on ICT-intensity, labour force composition and Pavitt's patterns of innovation.

Robust evidence on weak efficiency of selection/reallocation mechanisms in both Italian and French manufacturing:

- Productivity-profitability is the only robust link
- Weak relation between productivity and growth
- Weak relation between profitability and growth
- High relevance of idiosyncratic factors beyond firm productivity, profitability, industrial and technological sectoral specificities.

- Transmission mechanism: how and to what extent profits are translated into growth and technical advantages into profits.
- Effectiveness of competition in selecting desirable economic entities
- What drives the accrual of productive capacity: market reallocation seems to have a minor impact.