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Abstract 
Record Linkage (RL) aims at identifying pairs of records coming from different sources and 
representing the same real world object. Despite several methods have been proposed to 
face RL problems, none of them seems to be at the same time fully automated and very 
effective. In this paper we present a novel suite of methods that instead possesses both these 
abilities. We adopt a mixture-model based approach, which structures a RL process into 
two consecutive tasks. First, mixture parameters are estimated by fitting the model to 
observed distance measures between pairs. Then, a probabilistic clustering of the pairs into 
Matches and Unmatches is obtained by exploiting the fitted model. In particular, we use a 
mixture model with component densities belonging to the Beta parametric family and we fit 
it by means of an original perturbation-like technique. Moreover, we solve the clustering 
problem according to both Maximum Likelihood and Minimum Cost objectives. To 
accomplish this task, optimal decision rules fulfilling one-to-one matching constraints are 
searched by a purposefully designed evolutionary algorithm. We present several 
experiments on real data that validate our methods and show their excellent effectiveness. 

 
1. Introduction 

Record Linkage (RL) (Elmagarmid et al., 2007) is the problem of identifying pairs of 
records coming from different sources and representing the same real world object. 
Integration of different data sources and improvement of the quality of single sources are 
only some of the real application scenarios that need to solve the RL problem. In Official 
Statistics, to cite just a single example, the need of performing a RL task arises whenever 
one tries to integrate statistical survey data with data coming from administrative archives, 
due to lacking or unreliable common record identifiers. 

In this paper we present a novel suite of methods for RL, based on mixture models 
(McLachlan et al., 2000; McLachlan et al., 1988). These are statistical models that allow to 
represent a probability distribution as a convex combination of other distributions. As RL 
methods always rely on distance measures between record pairs, the intuition behind the 
use of mixtures models is that these observed distances arise from a superposition of two 
distinct probability distributions: the one stemming from the subpopulation of Matches (M) 
and the other from that of Unmatches (U). Evidently, the ultimate aim of such a statistical 
perspective on RL is to exploit the mixture model for classification purposes, i.e., to bring 
to light the hidden grouping of the pairs in the underlying M and U classes. 

⎯⎯⎯⎯⎯⎯ 
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Since we formulate the RL problem as a classification problem driven by a mixture 
model, our approach requires the execution of two consecutive tasks. First, mixture 
parameters have to be estimated by fitting the model to the observed distance measures 
between pairs. Then, a probabilistic clustering of the pairs into Matches and Unmatches 
must be obtained by exploiting the fitted model. 

The fitting step is the crucial one, as it implicitly determines the quality of the 
subsequent clustering results. However, it represents a very hard task; indeed, the problem 
of fitting a mixture model is always difficult, but it is even more severe in RL applications. 
This is due to the huge class-skew inherent in RL problems, where the very few (and 
unidentified) distance measures stemming from Matches risk to be completely 
overwhelmed by the bulk of those stemming from Unmatches. To overcome this difficulty 
we developed an original fitting technique inspired by Perturbation Theory (Bender et al., 
1999). This technique allows us to obtain reliable estimates for the mixture parameters 
without relying on domain knowledge, thus not jeopardizing automation. 

In the clustering step we use the fitted mixture model to search an optimal classification 
rule such that each pair can be assigned, based on its observed distance value, either to the 
M or to the U class. This is accomplished in such a way as to optimize a global objective 
function while satisfying a set of one-to-one matching constraints. These constraints arise 
when the data sets to be matched do not contain duplicates. In particular, we solve this 
constrained optimization problem by means of a purposefully designed evolutionary 
algorithm (Michalewicz, 1996). We use the algorithm to find decision rules that minimize 
either the probability of classification error (Maximum Likelihood objective) or, 
alternatively, the expected classification cost (Minimum Cost objective). The resulting rules 
critically depend on posterior estimates of class membership probabilities, obviously 
derived from the fitted mixture model. 

The RL problem has received considerable attention by the scientific community, see 
(Elmagarmid et al., 2007) for a survey. Some works, e.g. (Chaudhuri et al., 2005; Guha et 
al., 2004), focus on solving the problem within a relational DBMS. Our approach is 
different from the cited ones because it is focused on effectiveness rather than on the ability 
to manage huge amount of data. The focus on effectiveness allows us to obtain results that 
are indeed superior to those obtained by (Chaudhuri et al., 2005) (whereas it was possible to 
compare the obtained results). However, our approach can be usefully inserted as a 
“decision engine” into a general RL system, even oriented to large databases.4 Indeed this 
would just require to undertake a preliminary step dedicated to the reduction of the 
comparison space, for which several techniques have been proposed (Elmagarmid et al., 
2007). This is because we designed our methods to be as general as possible; for instance, 
we do not rely on any restrictive assumption on the function to be used when comparing 
records. 

Moreover, we remark the completely automated nature of our approach. This makes our 
work different on the one hand from supervised techniques for RL, e.g. (Tejada et al., 
2001). On the other hand, our proposal is also different from the few unsupervised 
techniques, including (Chaudhuri et al., 2005; Verykios et al., 2000; Christen, 2007), none 
⎯⎯⎯⎯⎯⎯ 
4 The practical feasibility of our methods when dealing with very large amounts of data will be tested in the Experiment 

section of the paper. There we shall face a big RL problem involving data collected in the Post Enumeration Survey 
carried out by the Italian National Institute of Statistics to estimate the coverage rate of the 2001 population Census. 
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of which, to the best of our knowledge, is fully automated. Indeed, though not requiring 
exactly a clerically prepared training set, such techniques still depend critically on some 
external inputs: e.g., human intervention is needed to set crucial parameters for the 
algorithms in (Chaudhuri et al., 2005) and (Christen, 2007), or to provide few labeled data 
in (Verykios et al., 2000). 

Several works on RL rely on a probabilistic approach. A comparison with such works, 
mostly based on the Fellegi-Sunter formulation of the problem (Fellegi et al., 1969), will be 
presented later on in the paper (see Section 4), when we shall discuss the details of our 
proposal. 

The paper is organized as follows. In Section 2 basic assumptions underlying statistical 
approaches to RL are introduced. These assumptions are then distilled in the form of a 
loose prior knowledge that our method is able to exploit successfully when facing practical 
RL tasks. Section 3 defines the adopted mixture model, whose component densities belong 
to the Beta parametric family. Section 4 is devoted to a thorough motivation and description 
of our original mixture-model fitting technique. Section 5 faces the clustering step, deals 
with one-to-one matching constraints and describes our clustering evolutionary algorithm. 
In Section 6 we test the effectiveness of our suite of methods on real-world RL instances. 
Finally, Section 7 draws some conclusions. 

 
2. A Statistical Perspective on Record Linkage 

Let us consider two sets A, B of real world objects selected from a universe Ω and let 
us suppose that A and B contain some common objects, i.e. ∅≠∩BA . We denote by 
M the set of matched objects that appear in both A and B, BAM ∩= , and by U the set 
of non-matched objects that appear in either A or B but not in both, MBAU \)(= ∪ . 
Obviously UMBA ∪∪ = . 

We formally represent a deterministic data generating process as a mapping g from Ω to 
a data space S, such that Sog

g

∈∋Ω =)(ωωa . The image of A (B) under g is a subset of 
S: we call it data set A (B). Notice that representing g as a mapping implicitly rules out the 
possibility that data sets A and B contain duplicated records. For duplicates we mean 
records that i) belong to the same data set and ii) correspond to the same real world object. 
We shall denote a real world object with a greek letter, A∈α , and the record to which it 
is mapped by g with the corresponding latin letter, Aag ∈=)(α . 

The Record Linkage problem is defined as follows. Given two data sets A and B, find a 
partition of their cartesian product such that: 

UMBA ∪× =         (1) 

where we introduced the set of record pairs that are Matches: 

},,=:),{(= BA ∈∈×∈ βαβαBAbaM     (2) 

and the one of record pairs that are Unmatches: 

},,:),{(= BA ∈∈≠×∈ βαβαBAbaU     (3) 
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Consider now an ideal (i.e. deterministic and error free) data generating process 0g , 
that is any injective mapping of Ω to S. If data sets A and B were generated under 0g , the 
RL problem would be trivial. Indeed, since βαβα =)(=)( 00 ⇒gg , the Matches set 
would be simply: 

}=:),{(= baBAbaM ×∈       (4) 

In other words, under an ideal data generating process the information stored into a record 
is sufficient to unambiguously identify the corresponding real world object. 

Unfortunately, real world data generating processes are always affected by a wide 
variety of errors. Being the underlying error mechanism unknown (and hence the generated 
errors unpredictable), every real data generating process g has to be thought as a stochastic 
process. It can be useful to describe such a g as the addition of a random noise (representing 
the errors) to a signal (representing the records that would have been generated under ideal 
conditions): ))((=)( 0 αα gg n . Here the noise n is treated as a function of a deterministic 
argument (i.e. an input record So∈ ) whose value is a “random variable” (i.e. an output 
random record )(=~ oo n  still belonging to the data space S). We do not exclude that the real 
world data sets A and B have been generated by two distinct data generating processes, 
rather we only assume that the difference (if any) is entirely due to the error generating 
mechanism: ))((= 0 AgA An , ))((= 0 BgB Bn . 

From a RL point of view, the main effect of the stochastic nature of a data generating 
process is that, with some nonzero unknown probabilities: i) the same real world object, 

M∈μ , can correspond to two distinct records, 
BA mm ≠  with AmA ∈  and BmB ∈ ; ii) two 

distinct real world objects, UU ∈∈ 21 ,υυ , can correspond to the same record, 
BuAu ∈∈ , . Due to i) and ii) the set identity (4) is in general not true anymore and the RL 

problem becomes non-trivial. 
Since simply assessing whether two records are equal is no longer sufficient to 

unambiguously classify the pair as a Match or as an Unmatch, let us introduce a “distance” 
function +ℜ→× SSd : . We do not require d to fulfill the triangle inequality, thus S 
(endowed with d) does not need to be a metric space. Instead, we do believe that d is able to 
capture reasonably well the “amount of difference” between two records (whatever their 
structure). Consider now a record pair (a, b) belonging to BA× : since a and b are regarded 
as (realizations of) random variables, this will also hold true for their distance d(a, b). For 
the sake of simplicity (but without loss of generality as the distance is a bounded variable) 
we shall suppose d to be normalized so that its values fall inside the [0,1] interval. 

The basic idea behind every statistical approach to the RL problem is simple: we do 
believe that the observed distances between record pairs (although a priori unpredictable) 
carry some useful information about whether a given pair belongs to the set of Matches or 
to the one of Unmatches. Hence the distance d is viewed as an observable auxiliary random 
variable that we can use to infer the unknown outcomes of an (artificial) unobservable 
interest random variable z, namely the class membership indicator of a pair: 

⎩
⎨
⎧

∈
∈

U   pairth-i if
M pairth-i if

zi 0
1

=        (5) 
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Obviously this picture is founded on the hypothesis that the probability distribution of the 
distance d is significantly different inside the M and U classes. This in turn translates into 
the assumption that the noise component of the data generating process is only a small 
perturbation to the ideal signal. 

Consider as an example Figure 1 where superimposed distance density plots are showed 
for Match (solid lines) and Unmatch (dashed lines) pairs. Both panels refer to the same 
original clean data sets to which we added random errors at moderate (left panel) and very 
high (right panel) rates. 

 
Figure 1 - Distance density plots at moderate (left) and very high (right) error rates. Each graph 

shows superimposed density plots for Match (solid blue line) and Unmatch (dashed 
red line) pairs. [Physics data sets, see Section 6] 

 
 
 
 
 
 
 
 
 
 
 
 
 

In the “moderate noise” scenario the shapes of the M and U distance densities are very 
different: Unmatches tend to be concentrated at higher distances than Matches, which 
furthermore still exhibit their own distinctive modal peak at zero distance; moreover M and 
U densities show only a relatively small overlap. On the contrary in the “high noise” 
scenario not only both Matches and Unmatches are located in the high-distance region, but 
in addition their densities almost completely overlap. While we are confident that a 
statistical approach to the RL problem will reveal itself appropriate to the first scenario, its 
use seems hopeless in the second. Luckily experience teaches two important lessons: i) the 
“high noise” scenario is almost never met in real-life applications, ii) the qualitative 
features of the M and U densities we just illustrated for the “moderate noise” scenario are 
quite general i.e. common to the great majority of practical problems. As a consequence we 
feel allowed to consider these main features as a prior knowledge about the underlying, 
unknown M and U distance probability distributions. 

Besides this, it seems that another piece of prior knowledge is readily available, namely 
that Matches are rare. Indeed, if data sets A and B do not contain duplicated records (as we 
already assumed) the Match rate, i.e. the ratio between the cardinalities of M and BA× , 
cannot exceed the value |)||,(|max1/ BA . This value is very small in almost all the RL 
problems, even when blocking techniques have been applied. 
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Therefore, two distinct kinds of prior knowledge – named in the following PK1 and 
PK2 – are at our disposal: the first one, PK1, concerning the main qualitative features of 
the M and U distance probability distributions, the second, PK2, concerning the large 
class-skew between M and U pairs, with Matches being rare as compared to Unmatches. 
Figure 2 exemplifies in a clear-cut way the excellent agreement between the 
aforementioned basic assumpions PK1 and PK2 and sample data coming from a real-
world RL instance, namely “Restaurants” (see Section 6). 

 
Figure 2 - Pairwise-distances coming from a real-world RL instance [Restaurants data sets, see 

Section 6]. Upper panel: distance histogram of the whole unlabeled data (176,423 
pairs). Lower panel: superimposed distance histograms for Match pairs (blue, dark) 
and Unmatch pairs (red, light); note that a 500 times y-axis zoom was needed to 
detect the feeble signal arising from the few Matches (112 pairs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Restaurants data contain only 112 Matches out of 331×533 = 176,423 pairs, 
yielding a Match rate of 6.3×10-4, in full compliance with PK2. Therefore, the histogram 
plotted in the upper panel, which represents the distance distribution of the whole unlabeled 
data (i.e. pairs belonging to both M and U classes), turns out to be totally dominated by the 
overwhelming contribution arising from Unmatches. As a consequence, a 500 times zoom 
of the low frequency region of the plot was needed in order to detect the feeble M 
distribution, as reported in the lower panel of figure 2. Moreover, the specific features of 
the M and U distance probabilities distilled into PK2 are clearly reflected into the 
observed histograms. Indeed, Matches are dominating at low distances (with a bump at d = 
0 arising from M pairs that haven’t been hit by errors) and exhibit a soft right tail. 
Unmatches, in turn, dominate the high-distance region and show a soft left tail. 
Furthermore, there is only a small overlap between M and U tails. 

We shall see in Sections 3 and 4 how our approach successfully exploits both PK1 and 
PK2 when facing practical RL tasks. 
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3. A Mixture Model for Record Linkage 
Let us denote by nA and nB the cardinalities of data sets A and B respectively and by nM 

and nU the (unknown) cardinalities of classes M and U. Furthermore, let us call nP the 
cardinality of the set of pairs BA×  and define, for later convenience, ),(min= BA nnnmin  
and ),(max= BA nnnmax , so that maxmin n nn nn BAP ⋅⋅ == . We shall denote the observed 
distances between record pairs by di where 

Pni ,1,= K  and an arbitrary ordering of the 
pairs is assumed. As we sketched in Section 2, we shall treat values di as nP independent 
and identically distributed (iid) realizations of a random variable5 d with values in [0,1]. 

We represent the probability density function (pdf) of d by the following two-
component mixture density (McLachlan et al., 2000; McLachlan et al., 1988): 

)()(=)( dfdfdf UUMM ππ +       (6) 

where the components 
UMf ,

 are the distance densities for the classes M and U and the 
mixing weights 

UM ,π  give the proportions of the classes, 
PUMUM nn /= ,,π  (so that 10 , ≤≤ UMπ  

and 1=UM ππ + ). 
In what follows we assume that a suitable description of the mixture (6) can be achieved 

by supposing that its component densities belong to the Beta parametric family, namely 
);(=)( ,, UMUM ddf θBeta  where ),(= ,,, UMUMUM βαθ  and: 

11 )(1
)()(
)(=),;( −− −

ΓΓ
+Γ βα

βα
βαβα dddBeta     (7) 

with Γ  denoting the Euler Gamma function and the shape parameters fulfilling 0>α  and 
0>β . Hence density (6) is turned into a parametric two-component mixture model 

);(=)( Ψdfdf  described by five independent parameters ),,,,(= MUUMM         πβαβαΨ . 
The basic reasons that led us to select the Beta family for our mixture model can be 

summarized as follows: 

• The Beta distribution has support in (0,1). This is appropriate for our distance random variable d.6 
• The Beta distribution is flexible. By opportunely tuning its α  and β  parameters the 

Beta density can take a broad range of shapes, such as: flat, U-shape (as well as inverse 
U-shape), J-shape (as well as mirrored J-shape), unimodal (both narrowly peaked or 
smooth), symmetrical or asymmetrical, and so on. 

• The Beta distribution can be skewed, both positively and negatively. This property 
is desirable as we expect from the discussion about PK1 in Section 2 that the 
distance densities for M and U classes are skewed (with longer right and left tail 
respectively). 

⎯⎯⎯⎯⎯⎯ 
5 For economy of notation random variables will not be typographically distinguished from their realizations: the 

intended meaning should be clear from the context. 
6 There is a technical subtle point arising from the fact that the support of the Beta distribution does not include the 

boundary values d = 0 and d = 1, whereas pairwise distances equal to 0 or 1 can be (and in general are) observed in 
practice. Due to space limitations, we cannot describe in a detailed way how we solved this problem; we just point out 
that, instead of a mixture of simple Betas, we adopted a mixture of Inflated Beta distributions (Ospina et al, 2010). 
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• The parameters controlling the Beta distribution are shape parameters. This is an 
important point because it allows to easily translate our prior knowledge PK1 into a 
well defined set of constraints acting on the parameter space (this would not have been 
the case if, instead, we decided to plug into our mixture model (6) some pdfs described 
by location and scale parameters). 

 
We stress here that the primary aim of our mixture model is not the one of obtaining a 

high-quality description for the observed distance distribution of the dis. If it were the case, 
one could be led to model a mixture with more than two components or, otherwise, to 
worry about the inability of the Beta family to represent multimodal distributions (look e.g. 
at the shape of the M density in the left panel of Figure 1). On the contrary we basically see 
the mixture as a device to exploit the observed dis distribution in order to bring to light the 
hidden underlying grouping of the record pairs into the M and U classes. Since, at least in a 
mixture approach mainly aimed at clustering, it is the fit of the tails of the class 
distributions that turns out to be crucial (McLachlan et al., 1988) (rather than the fit of the 
main body of the data, for which a good “average description” seems enough), our choice 
of the Beta family will prove to be satisfactory. 

Once equipped with our two-component Beta mixture model, we have to accomplish 
two major tasks in order to find a solution to a specific RL problem: 

1. We must fit the mixture model to the observed distance values dis, so as to obtain 
estimates Ψ̂  for the mixture parameters. 

2. We must achieve (upon plugging into the model the estimates Ψ̂ ) a probabilistic 
clustering of the record pairs tied to the observed distances dis into classes M and U. 

 
The task of fitting a mixture model can be handled by a variety of methods, including 

e.g. the method of moments (MOM), Bayesian methods and graphical methods. In the 
present work we chose the Maximum Likelihood (ML) method which is by far the most 
popular. Anyway, the technique we developed for obtaining ML estimates for the 
parameters of our mixture model is indeed original. Therefore, the next section of the paper 
will be devoted to a detailed motivation and description of this technique. 

Section 5 will describe the clustering task, which we shall face in a decision-theoretic 
framework. An optimal classification rule will be searched such that each record pair i can 
be assigned, based on its observed distance value di, either to the M or to the U class, in 
such a way as to optimize a given global objective function. 

Before going into further details, we observe – as a general remark – that our methods 
can be ascribed as a whole to the frequentist inferential scheme. This seems to be the case 
also for most of the classical papers in the probabilistic RL literature. On the other side, 
some authors have proposed techniques to face the RL problem in a purely Bayesian 
framework, see e.g. (Fortini et al., 2001; Larsen, 2005). Although a discussion of such 
techniques is beyond the scope of the present paper, future works could explore the 
possibility to embed our strategies (e.g. the way we use PK1 and PK2) in a purely 
Bayesian inferential scheme. 
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4. Fitting the Mixture Model: a Perturbation-like Approach 
Under our two-component Beta mixture model, the log-Likelihood associated to the 

observed distance values ),,(= 1
P

ndd Kd  reads: 

[ ]);();(log=);(log
1=

UUUMMM

P

ii

n

i
dfdf    θπθπ +Ψ ∑dL     (8) 

The maximum Likelihood estimator (MLE) of the unknown mixture parameters Ψ  can 
thus be defined as follows: 

[ ]);(logargmax=ˆ ΨΨ Ψ dL       (9) 

Finding the MLE of a model is, with few exceptions, a hard task. Not only an analytic 
closed-form solution to the problem is generally not available, what’s more maximizing the 
Likelihood by means of numerical routines turns out to be difficult for most of the general-
purpose optimization algorithms. It is not by chance that an ad-hoc class of optimizers, 
namely the Expectation-Maximization (EM) (Dempster et al., 1977) family, has been 
specifically tailored to handle ML problems. Unfortunately, the situation is even worse for 
mixture models, since their Likelihood function is often unbounded over the parameter 
space and typically exhibit many spurious local maxima. Anyway, the EM (or an EM-like) 
algorithm remains by far the favorite tool to handle ML estimation of mixture model 
parameters. 

Many authors (Jaro, 1989; Armstrong et al., 1992; Winkler, 1993; Winkler, 1994; Belin 
et al., 1995; Larsen et al., 1997; Larsen et al., 2001) have already proposed the use of 
mixture models to solve RL problems. Some comments are in order, since the method we 
developed to fit our mixture is significantly different from the ones implemented in those 
classical papers: 

• They all exploit mixture models adopting a Fellegi-Sunter approach (Fellegi et al., 
1969). Thus the role of our auxiliary unidimensional distance variable d is typically 
played by a k-vector variable whose components represent agreement/disagreement 
outcomes obtained when comparing record pairs on k matching fields.7 

• With the only exception of (Armstrong et al., 1992), they all use an EM-like algorithm 
in the mixture model fitting phase. 

• A mixture model with more than two components is generally selected. From a 
clustering point of view, this obviously raises the question of how many and which 
mixture components have to be associated to each of the M and U classes. 

⎯⎯⎯⎯⎯⎯ 
7 On the whole, i.e. when taking into account the methods we propose for both the fitting phase (Section 4) and the 

clustering phase (Section 5), our approach differs very much from Fellegi-Sunter’s one (FS). Just to mention some of 
the differences: i) FS has a third class (besides M and U), namely the Possible Match class; ii) FS relies on a completely 
different notion of “optimal decision rule”, which is neither based on Maximum-Likelihood nor on Minimum-Cost, but 
rather involves the Possible Match class; iii) FS implementations tipically rely on the assumption of conditional-
independence for the components of the comparison vector; iv) FS applications generally ask the user to set 
classification thresholds. 
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• Their methods always encompass some amount of “human work” which is specifically 
meant to incorporate some kind of “experience” into the mixture fit. Possible ways to 
achieve this result are the following: i) guesses based on previous linkage applications 
on similar data can be employed to build initial estimates of model parameters; ii) 
selected record pairs (typically the more difficult to classify) can be sent to clerical 
review and the mixture model can be re-fitted by using also those clerically classified 
cases; iii) a training set of pre-labeled record pairs can be prepared, in order to fit the 
mixture component(s) describing e.g. the M class by means of only cases surely 
belonging to that class. 
 
With regard to last point, the cited papers agree on the following finding: as far as RL 

problems are concerned, mixture models tend to cluster the pairs into groups that, despite 
achieving a good fit, often do not correspond to the desired M and U classes. The reason for 
this behavior seems more controversial, with some authors ascribing it mainly to model 
misspecification and some others putting the emphasis on the difficulty in the estimation of 
mixture model parameters. Anyway, a sharp picture emerges from the literature above: the 
only way a mixture model can yield high-quality RL results is to incorporate in it some 
kind of “previous knowledge”. We agree on this last conclusion, but we contend that the 
necessary prior knowledge can be incorporated without relying on “clerical work”, thus not 
jeopardizing automation. 

In our opinion the poor clustering results that a “basic” (i.e. not experience-enriched) 
mixture-model would generally achieve in RL applications have to be mainly imputed to 
the huge class-skew inherent in these problems. More specifically, we argue that troubles 
would usually arise from the previous model fitting phase, due to the extreme Match rarity. 
Indeed, unless some countermeasure is adopted, whatever fitting algorithm would tend to 
tune all the model parameters so as to better describe some peculiar feature of the 
dominating U distance distribution. 

The fitting technique we propose tries to exploit our two-fold previous knowledge 
(PK1 and PK2) in order to prevent the few (and so far unidentified) distance values 
stemming from the M class from being completely overwhelmed by those belonging to the 
U class. This is accomplished by means of a Two-Step algorithm. Before going into details, 
we offer here an intuitive insight into its working mechanism. The First-Step concentrates 
on the U component mixture parameters and is specifically aimed at “factorizing” the 
leading contribution arising from Unmatches. The Second-Step strives to increase the 
Likelihood achieved in the previous step by using the remaining mixture parameters in a 
“smart way”; that is, M density parameters are tuned in such a way as to better fit the 
behavior of the distance distribution exactly in those regions of the [0,1] interval in which 
values stemming from Matches are more likely to be found. 

Our two-step algorithm follows a perturbation-like approach to the ML mixture fitting 
problem (9). Perturbation Theory (Bender et al., 1999) is a family of mathematical methods 
aimed at finding an approximate solution to problems that cannot, in general, be solved exactly 
but would become easy to solve if a parameter, say ε, had a given value, say ε = 0. The key idea 
is to build an approximation to the unknown solution of the true (i.e. ε ≠ 0) problem by 
perturbing the known solution of the easier (i.e. ε = 0) problem, that is by adding to it further 
terms. These “higher orders” terms can be computed iteratively by some systematic procedure 
and, if ε < 1, turn out to be suppressed by increasing powers of ε. As a consequence, a 
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satisfactory solution can very often be obtained by truncating the series at its second term, that is 
by retaining only the initial solution and the first-order perturbative correction. 

Due to prior knowledge PK2, we are aware that the true unknown value of the mixing 
weight 

Mπ  is very small: 

11  
nmax

M <<≤  π                     (10) 

Moreover, in the limit 0=Mπ , our hard mixture MLE problem (9) is turned into the much 
simpler problem of finding the MLE for the U density alone. Therefore we are allowed to 
look for a perturbative expansion of our mixture model parameters in powers of 

Mπ : 

L+++ 2= (2)(1)(0)

MUMUUU πθπθθθ                   (11) 

L+++ 2= (2)(1)(0)

MMMMMM πθπθθθ                   (12) 

where the )( j  superscript denotes the j-th-order coefficient to be estimated. By inserting 
expansions (11) and (12) inside (9) we get a hierarchy of sub-problems that can be solved 
in a chain to yield the desired estimates )(

,
ˆ j

UMθ . As we are going to see, our First-Step and 
Second-Step optimizations are respectively in charge of solving the zeroth-order and first-
order approximations of problem (9). Moreover, Second-Step optimization has also to 
incorporate the first piece of prior knowledge we collected, i.e. PK1. 

 
4.1 First-Step Optimization 

To zeroth-order in perturbation theory our MLE problem reads: 

⎥⎦
⎤

⎢⎣
⎡∑ );(log=);(log (0)(0)

1=
UU

P

U i

n

i
I df θθdL                  (13) 

⎥⎦
⎤

⎢⎣
⎡ );(logargmax=ˆ (0)

(0)

(0)

U

U

U I θθ
θ

dL                  (14) 

where our First-Step effective Likelihood LI differs from the real Likelihood L by terms that 
are at most of order 

Mπ . 
Since the mixture structure has disappeared from (13), an EM-like optimizer is no 

longer a mandatory choice. Indeed, when implementing the method, we chose to maximize 
LI by means of a faster quasi-Newton8 multivariate optimization algorithm. The starting 
guess needed to initialize the optimizer was computed as the MOM estimator of parameters 

),(= (0)(0)(0)

UUU βαθ  given the observed distance distribution, namely: 

⎯⎯⎯⎯⎯⎯ 
8 This required to derive the analytical expression of the gradient of the effective log-Likelihood (13), which we cannot 

report here due to space limitations. 
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d 
v

dd
start

U ⎥
⎦

⎤
⎢
⎣

⎡
−

− 1)(1=(0)α                   (15) 

)(11)(1=(0) d
v

dd
start

U −⎥
⎦

⎤
⎢
⎣

⎡
−

−β                   (16) 

where the sample mean i
n

i
dnd P

P ∑ 1=
)(1/=  and the sample variance 2

1=
)()(1/= ddnv i

n

i
P

P −∑  
of the dis have been used. 

Coming back to the method, once a solution for the First-Step problem (14) is at hand, it 
becomes possible to take a step further in the perturbative approximation of the original 
MLE problem. This is accomplished by the subsequent Second-Step optimization. 

 
4.2 Second-Step Optimization 

If, after having inserted expansions (11) and (12) inside (9), we keep terms up to first-
order in 

Mπ  and, in addition, we use the achieved zeroth-order solution (14), we get: 

⎥⎦
⎤

⎢⎣
⎡ −+∑ )ˆ;()1();(log=),;(log (0)(0)(0)

1=
UUMMMM

P

MM ii

n

i
II dfdf  θπθππθdL               (17) 

where our Second-Step effective Likelihood LII differs from the real Likelihood L by terms 
that are at most of order 2

Mπ . 
It is worth noting that, despite contributions of order 

Mπ  have been retained, equation 
(17) does not contain the first-order coefficient (1)

Uθ  of (11), that is LII does not depend on U 
parameters. This is a direct consequence of (0)

Ûθ  being a (local) maximum of ILlog . Indeed, 
as the gradient of ILlog  is zero in (0)

Ûθ , a deviation of order 
Mπ  from (0)

Ûθ  can have at most 
an effect of order 2

Mπ  on the log-Likelihood. Therefore, everything goes as if we were now 
switching on the parameters describing the M component of the mixture, while those from 
the U component have been “frozen” to the estimated values found in the previous 
optimization step. 

We must now incorporate our prior knowledge PK1 and PK2 inside the Second-Step 
optimization problem. Since equation (10) already summarizes PK2, we have only to 
translate PK1 into a set of constraints acting on M parameters ),(= (0)(0)(0)

MMM βαθ . This task 
can be completed by studying the dependence of the Beta distribution (7) on the shape 
parameters and by exploiting known formulae for its first moments; the following chain of 
translations results: 

1. Unmatches are mainly located in the high distance region and the U density is 
negatively skewed: 

UU αβ <  
2. Matches are mainly located in the low distance region and the M density is positively 

skewed: 

MM αβ >  
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3. The U density dominates the M density in the limit d → 1: 

UM ββ >  
4. The M density dominates the U density in the limit d → 0: 

UM αα <  
5. The M and U densities have a small overlap. The easiest way to express this somewhat 

fuzzy requirement, while fulfilling constraints 1) – 4), is as follows: 

UMUM and αββα ><  
 
Replacing inside 1) – 5) U parameters with estimates and neglecting redundant 

constraints, we eventually obtain the complete formulation of the Second-Step MLE 
problem: 

⎥⎦
⎤

⎢⎣
⎡ ),;(logargmax=}ˆ,ˆ{ (0)

(0)

(0)

},{
MM

MM

MM II πθπθ
πθ

dL                (18) 

:tosubject  
(0)(0) ˆ< UM βα                     (19) 
(0)(0) ˆ> UM αβ                     (20) 

maxnM 1/≤π                     (21) 

It should be noted that, since 0=Mπ  is a feasible point for the constrained ML problem 
(18)-(21), and as )0()0()0( )ˆ;()0,;( MUMM III θθπθ ∀≡= dd LL , the following inequality will be 
satisfied: )max(log)max(log III LL ≥ . Consequently, Second-Step Optimization cannot 
decrease the Likelihood achieved in the First-Step, but rather will in general increase it. 
This is coherent with the quick outline we gave in Section 4 on our Two-Step perturbative 
fitting technique. 

Furthermore, thanks to the decoupling of U and M parameters, once again the need of 
an EM-like optimizer has been overcome. Indeed, the software we developed solves the 
constrained ML problem (18)-(21) by means of a box-constrained quasi-Newton9 
multivariate algorithm. Besides the usual by-product of saving computation time, this 
choice freed us from the tricky machinery required to manage a constrained EM-like 
algorithm (Winkler, 1993). When testing our application, random starting values drawn 
from the feasible region (19)-(21) were used to initialize the optimizer. Because fairly 
stable results were found, we eventually fixed the starting guess as follows: 

⎯⎯⎯⎯⎯⎯ 
9 Again, this required to derive the analytical expression of the gradient of the effective log-Likelihood (17), which we 

cannot report here due to space limitations. 
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10/ˆ= (0)(0)

U
start

M βα                     (22) 

(0)(0) ˆ10= U
start

M αβ                     (23) 

)(1/2)(1/= maxn
startMπ                    (24) 

Computing a solution of the Second-Step optimization problem (18)-(21) completes the 
task of fitting our two-component Beta mixture model. By plugging into the model the 
achieved estimates: 

)ˆ,ˆ,ˆ,ˆ,ˆ(=ˆ (0)(0)(0)(0)

MUUMM         πβαβαΨ                  (25) 

we can now switch to the problem of clustering the record pairs into classes M and U. 
 
 

5. Clustering Pairs using the Mixture Model 
As we already mentioned in Section 3, our mixture model has been specifically 

designed to be used for clustering purposes. The goal is, indeed, to exploit the model – 
along with its ML estimated parameters (25) – to assign each record pair i either to the M or 
to the U class. Clearly the obtained classification for the i-th pair will depend on its 
observed distance value di. 

 
5.1 Optimal Classification Rules from Decision Theory 

Let us attach to each record pair i a class membership indicator zi with value 1 if the pair 
is a Match and 0 otherwise. The true value of zi is obviously unknown: it will precisely 
represent the target of our inferences. We shall, consequently, treat variables zi as iid10 
realizations of a latent random variable z. Variable z can be incorporated inside our mixture 
model (6), which describes the distance pdf, by assuming that: 

1. Variable z is distributed according to a single draw from a Binomial distribution with 
success probability given by 

Mπ . 
2. The conditional densities of d, given z = 1 and z = 0, are );( MM df θ  and );( UU df θ  

respectively. 
 

Under conditions 1) and 2), the complete mixture density can be expressed as follows: 

[ ] [ ] z z 
UUUMMM dfdfzdg −Ψ 1);();(=);,( θπθπ                 (26) 

Correspondingly, the complete (and unobservable) log-Likelihood associated to the 
observed distance values ),,(= 1

P
ndd Kd  and to the hidden class labels ),,(= 1

P
nzz Kz  

reads: 

⎯⎯⎯⎯⎯⎯ 
10 Notice that the independence assumption on variables zi cannot hold true for 1:1 RL problems (i.e. when the data sets to 

be matched do not contain duplicates). We shall come back to this issue in Section 5.2. 
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[ ] =);,(log=);,(log
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c
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ΨΨ ∑zdL  
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⎦

⎤
⎢
⎣

⎡
+ ∑∑ );(

);(log);(log=
1=1= UUU

MMM
P

UUU

P
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i
i

n

i
i

n

i df
dfz      df  
θπ
θπθπ                (27) 

Thanks to (26), the mixing weights 
Mπ  and 

Uπ  can now be understood as the prior 
probabilities that the i-th pair belongs to class M and U respectively, while the 
corresponding posterior probabilities, given the distance value di observed for the pair, are: 

}{);()/;(=);( U M,=Ciiii dfdfd CCC

C ΨΨ θπτ                 (28) 

Estimates of posterior probabilities C
iτ̂  can be built by simply plugging into (28) the 

previously computed estimates (25) for the model parameters Ψ̂ . As we are going to see, 
these values C

iτ̂  play a central role in the clustering task. 
A “classification rule” that assigns each record pair i to a class is nothing but a rule to 

infer a value iẑ  for the hidden variable iz . An optimal rule has moreover to work in such a 
way as to optimize some global objective function. 

A first, very natural choice is to select as objective function the complete log-Likelihood 
itself. This means that we look for an allocation vector ẑ  that maximizes the complete data 
Likelihood under the model (26), namely: 

[ ])ˆ;,(logargmax=ˆ Ψzdz z
cL                   (29) 

The solution of (29) follows easily from the structure of (27): 

⎩
⎨
⎧ ≥

otherwise
if

z
UM

ii
i 0

ˆˆ1
=ˆ ττ                    (30) 

Formula (30) is a classical Decision Theory result (Duda et al., 2000), known as the “Bayes 
decision rule” (or as “Maximum a Posteriori (MAP) rule”): it assigns each pair to the class 
to which the pair has the highest estimated posterior probability of belonging. 

A sometimes useful alternative is to find the classification rule that minimizes the 
expected value of a Loss Function. For instance, different costs can be assigned to the 
possible outcomes of a decision (Verykios et al., 2003). Indeed, the cost CPU for declaring a 
pair to be a Match (we call this a positive decision) when it is actually an Unmatch can 
differ from the cost CNM for declaring a pair to be an Unmatch (we call this a negative 
decision) when it is actually a Match. In this situation, an appropriate Loss Function would 
be the expected Total Cost associated to a classification ẑ : 

[ ] [ ] ( )iii

n

i
iii

n

i
z    z  U

NU

M

NM

P
U

PU

M

PM

P

TOT
ˆ1ˆˆˆˆˆ=)ˆ;ˆ,(

1=1=

−+++Ψ ∑∑ ττττ CCCCC zd               (31) 

Minimizing the expected Total Cost (31) with respect to ẑ  is straightforward and leads to 
the following optimal decision rule: 
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( ) ( )
⎩
⎨
⎧ −≥−

otherwise
  if

z
U

NUPU

M

PMNM ii
i 0

ˆˆ1
=ˆ ττ CCCC                 (32) 

Once again, formula (32) is a classical Decision Theory result (Duda et al., 2000). If a zero 
cost is assigned to a correct decision (i.e. CPM = CNU = 0) and the same cost, say one, is 
assumed for both kinds of wrong decisions (i.e. CPU = CNM = 1), the expected Total Cost 
(31) simply measures the expected number of classification errors; accordingly, the optimal 
decision rule (32) is turned into the Bayes rule (30). 

The software we developed is able to cluster the pairs according to both (30) and (32) 
rules. Anyway, these clustering results have to be understood only as “provisional 
solutions” to the RL problem at hand. Indeed, while building our mixture fitting method in 
Section 4, we assumed – recall e.g. equation (21) – that the data sets to be matched did not 
contain duplicates. This obviously translates into a set of one-to-one matching constraints 
that, in general, are not fulfilled by the aforementioned optimal decision rules. Next section 
is devoted to describe how our method overcomes this difficulty. 

 
5.2 Dealing with One-to-One Matching Constraints 

As data sets A and B do not contain duplicates, each record belonging to either data set 
can match at most a single record selected from the other data set. Therefore, the number of 
true Matches cannot exceed the cardinality of the smaller data set, i.e. minnnM ≤ , whence 
equations (10) and (21) follow. 

In order to express these one-to-one (1:1) matching constraints in a formal way, let us 
switch to a more convenient matrix notation. We start by arranging the nP observed 
distance values di into a maxmin nn ×  matrix D, in such a way that element Dij represents the 
distance between the i-th record of the smaller data set and the j-th record of the bigger data 
set. Next we introduce matrices Z and Ẑ  to store, in the same way, the unknown class 
membership indicators of the pairs and their inferred values, respectively. Accordingly, 
quantities depending on features of the generic i-th pair (like id , iz , iẑ , C

iτ̂ , and so on) 
have to be replaced, inside all previous sections formulae, by the corresponding two-index 
quantities (like ijD , ijZ , ijẐ , C

ijτ̂ , and so on). At the end, 1:1 matching constraints can be 
readily incorporated into the problem of finding an optimal decision rule. For instance, the 
ML problem (29) now reads: 

[ ])ˆ;,(logargmax=ˆ ΨZDZ c
Z L                   (33) 

:tosubject  

iZij

maxn

j
∀≤∑ 1

1=

                   (34) 

jZij

minn

i
∀≤∑ 1

1=

                   (35) 

with (34) and (35) obviously implying 
minijij

nZ ≤∑ . 
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Problem (33)-(35) deserves some comments. First of all, it is apparent that, due to the 
1:1 restrictions (34) and (35), variables ijZ  cannot be stochastically independent (e.g. if 

1=kmZ  then kiZim ≠∀0=  and mjZkj ≠∀0= ). As a consequence, being the underlying 
iid property violated, one should not use formula (27) to express the complete data 
Likelihood. Anyway, the task of deriving its correct expression without relying on the iid 
assumption turns out to be too difficult to be handled. Therefore, one is led to the practical 
compromise of solving the constrained problem (33)-(35) while keeping the old formula 
(27) for the complete data Likelihood. 

In any case, 1:1 matching constraints heavily affect the complexity of both ML and 
Minimum Cost optimization problems: now, indeed, a decision taken on a pair influences 
decisions to be taken on other pairs. Moreover, clustering results based on classical decision 
rules (30) and (32) will not, in general, fulfill 1:1 constraints. Consequently, our software 
treats these quickly computed results as “provisional solutions”. This means that they are 
checked against (34) and (35), and, only if 1:1 constraints happen to be already satisfied, 
they are retained as “definitive results”. When, on the contrary, 1:1 constraints turn out to 
be broken, “definitive results” are searched by facing directly the constrained optimization 
problem (33)-(35) (or its Minimum Cost counterpart). This new – and harder – clustering 
task is accomplished by means of a purposefully designed Evolutionary Algorithm (EA) 
(Michalewicz, 1996). Even in this case the work carried out to compute the “provisional 
solutions” will not get wasted, as useful pieces of information stemming from these 
solutions will be exploited by the clustering EA. 

Before going into further details, we briefly argue why we chose an EA. A few papers 
from the RL literature (Jaro, 1989; Winkler, 1994) tackled the 1:1 problem11 by using 
Simplex-based algorithms. Indeed, since both the objective function and the constraints are 
linear in Zij, equations (33)-(35) can be formulated as a Binary Linear Programming (BLP) 
problem. The main concern with this approach is tied to memory usage. As a matter of fact, 
if one denotes with n the size of the data sets to be matched (i.e. nA ≈ nB ≈ n), one sees that 
the number of unknowns and inequalities for the BLP problem grow like n2 and n, 
respectively. The net result is that, due the heavy memory overhead of a Simplex-based 
solver, the BLP approach cannot be applied to real-world data sets unless a very efficient 
previous blocking step has been performed. On the contrary, as we shall see in Section 5.3, 
the size of the biggest data structure stored by our EA grows almost linearly with n. As a 
consequence, our software was able to handle all the RL problems listed in Section 6 (with 
the obvious exception of the huge PESfull instance, see the discussion therein) by running in 
an ordinary PC environment and without relying on blocking. Finally, we observe that our 
EA could be readily applied to clustering tasks that involve more complex Loss Functions 
than (32), e.g. nonlinear Loss Functions. 

⎯⎯⎯⎯⎯⎯ 
11 Notice, however, that those authors simply force 1:1 clustering restrictions on a statistical model that does not 

encompass them. On the contrary, we already took into account 1:1 matching constraints while fitting our mixture 
model parameters (see equation (21)). 
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5.3 An Evolutionary Algorithm for 1:1 Clustering 
The Evolutionary optimization metaheuristic is so versatile that EAs can often be 

employed to find a satisfactory solution even for problems for which no other solution 
strategy is known. This extreme flexibility has two major prices: i) no standard design rules 
for EAs are available; ii) EAs performance critically depend on how smartly problem-
specific pieces of information are incorporated into the algorithm. Considerations i) and ii) 
should push us to provide a thorough justification for each aspect of our clustering EA. 
Nevertheless, due to space limitations, we shall restrict ourselves to a very concise 
outline.12 In what follows we list the pseudocode of the algorithm and quickly describe 
basic choices, parameters and operators. 

EA PSEUDOCODE 

EA[nind, ngen, pmuta, gstall] 
g ← 0 
generate   Initial Population[nind] 
compute   Fitness 
while   (¬ Termination Criterion[ngen, gstall])   do 
    g ← g + 1 
    apply   Selection 
    apply   Reproduction + Repair 
    apply   Mutation[pmuta] 
    compute   Fitness 
end while 
return   Best Fit individual found 

 

Search Space. The EA search space is the set of all the nmin × nmax matrices Z with 
{0,1} elements that fulfill 1:1 constraints (34) and (35). It is a huge search space whose 
cardinality is given by: 

!=
0=

k
k

n
k

n
  minmaxminn

kZ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑N  

(just to get an impression: if nmax = nmin = 150 then NZ = 1.28×10272). 
Representation. We encode a generic candidate solution Z (phenotype) by means of a 

vector ζ  of length nmin (genotype). Elements of ζ  (alleles) can be 0 or integers between 1 
and nmax, namely },{0,1, maxk nK∈ζ  with k = 1, 2, …, nmin. The meaning of the alleles is 
easily understood. If 0=kζ , then the candidate solution states that the k-th record of the 
smaller data set does not match any record of the bigger data set. If, on the contrary, 

0>= jkζ , then the candidate solution states that the k-th record of the smaller data set 

⎯⎯⎯⎯⎯⎯ 
12 We assume a basic knowledge of EAs and refer to (Michalewicz, 1996) (and references therein) for more advanced topics. 
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does match the j-th record of the bigger data set. Obviously a legal genotype, that is a 
genotype encoding a feasible candidate solution Z, is not allowed to contain duplicated 
alleles other than the 0 allele. 

Fitness. The Fitness functions for ML and Minimum Cost clustering are obviously 
modeled on the corresponding objectives (27) and (31). For instance, in the ML case we have: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ U

k

M

k

k

k

kk

  
ζ

ζ

ζ τ
τ

ζ ˆ
ˆ

log=)(Fitness
0>:

                 (36) 

where uninfluential constant terms appearing in (27) have been dropped. 
Constraints. Even though only legal individuals are generated in the initial population, 

some illegal genotype may arise during evolution, due to Reproduction. In order to 
maintain a population of feasible candidate solution, these illegal genotypes are repaired by 
means of a purposefully designed operator. The Repair operator, *: ζζ    →Repair , acts 
as a stochastic function mapping a genotype, ζ , into a randomly repaired version of it, 

*ζ . If the ζ  individual is legal, Repair leaves it unchanged. If, instead, ζ  is illegal, 
Repair works as follows. Suppose ζ  has ρ  groups of duplicated non-zero alleles, with 
multiplicities rn  where ρ,1,= K  r . For each group r, Repair first randomly selects 
inside the group just a single allele to be left unchanged, then it substitutes all the remaining 

1 nr−  duplicates with the 0 allele. 
Initial Population. As the search space of our EA is so huge, generating a good initial 

population is crucial. It is apparent that creating nind random individuals by uniformly 
sampling the search space would be a very poor choice. On the contrary, our algorithm 
samples more heavily those regions of the search space that are believed to be “more 
promising” on the basis of the already computed posterior probabilities (28). This is 
accomplished by the following Monte Carlo (MC) technique. First, the following posterior 
probabilities are computed for each record k in the smaller data set: 

U

ki
i

kik      iZ    p τ̂=)0=(Pr=0 ∏∀                   (37) 

UM

ki
ji

kjki   ANDkj
j

k       j i   Z   Z    p ττ ˆˆ=))0=(1)=((Pr= ∏
≠

≠∀                (38) 

where j = 1, 2, …, nmax. Value 0
kp  is the posterior probability that the k-th record of the 

smaller data set does not match any record of the bigger, while j
kp  gives the posterior 

probability that the k-th record matches only13 the j-th. The MC procedure generates each 
element kζ  (for k = 1, 2, …, nmin) of each genotype ζ  of the initial population by sampling 
an allele value from {0, 1, …, nmax} with probability proportional to (37) and (38), i.e. 

00)=(Pr kk p∝ζ  and j
kk pj ∝0)>=(Pr ζ . These MC generated genotypes are eventually 

processed by the The Repair operator, in order to warranty that the whole initial 
population is legal. 

⎯⎯⎯⎯⎯⎯ 
13 Recall that the model in Section 5.1 does not encompass 1:1 constraints for the latent variable. 
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Selection. Selection is performed by means of a rank-2 tournament. Random pairs 
of individuals are formed. For each pair, the fitness of the individuals are compared. The 
fitter individual survives whereas the weaker dies and is dropped from the population, so as 
to make room for new individuals to be generated in the Reproduction phase. Notice that 
this Selection method is intrinsically elitist: the fittest individual of a generation surely 
survives and passes to the next generation. 

Reproduction. Reproduction is performed as follows. Individuals that survived to 
Selection are randomly paired. Each pair generates two children. These children take 
the place of individuals that have been eliminated in the previous Selection phase. As a 
consequence the size of the population nind is kept fixed during the evolution. Children 
genotypes are obtained by merging those of the parents by means of one-point crossover. 
Call 1pζ  and 2pζ  the parents and 1cζ  and 2cζ  the children. A random cut point 

1},{1, −∈ minn  cut K  is selected for the parents genotypes. Hence both 1pζ  and 2pζ  are cut 
into a left portion and a right portion. The first child receives the left portion from the first 
parent and the right from the second, i.e. ),,,,,(= 22

1
11

1
1 p

minn
p

cut
p

cut
pc ζζζζζ KK +

. The second 
child receives the left portion from the second parent and the right from the first, i.e. 

),,,,,(= 11
1

22
1

2 p

minn
p

cut
p

cut
pc ζζζζζ KK +

. As there is no warranty that the generated children 
1cζ  and 2cζ  are legal, they eventually undergo the Repair treatment before being 

plugged into the population. 
Mutation. Each individual of the population has the same probability pmuta of 

undergoing Mutation. Mutation acts on a genotype ζ  by affecting only a single 
allele. The outcome can be either that a nonzero allele is replaced by 0 (i.e. a declared 
Match is deleted from Z), or that a 0 allele is turned into a nonzero allele (i.e. a new 
declared Match is inserted into Z). The stochastic algorithm implementing Mutation 
exploits the posterior estimate of the number of Matches ii

z nM
ˆ=ˆ ∑  obtained from (30) (or 

(32) for Minimum Cost). A random integer },{0,1, minn  p K∈  is drawn from a Binomial 
distribution with size nmin  and success probability minnnM /ˆ . If the genotype to mutate has 
more than p nonzero alleles, p kk

>)sgn(ζ∑ , then a random nonzero allele is replaced by 
0. Otherwise, i.e. when p kk

≤∑ )sgn(ζ , a random 0 allele is replaced by a nonzero one 
randomly selected from the set { } ζ\,1, maxnK  (namely, by a new legal nonzero allele that 
did not already appear in ζ ). Notice that, since the expected value of p is exactly 

Mn̂ , 
Mutation tends on average to delete declared Matches from candidate solution that 
contain “too many” of them, and conversely to add declared Matches to candidate solution 
that contain “too few” of them. 

Termination Criterion. The Termination Criterion for the EA is two-fold. A first 
parameter, ngen, controls the maximum number of generations that can be spent during 
evolution. If g denotes a generations counter, then the EA would stop as soon as g > ngen. A 
second parameter, gstall, gives the maximum number of generations that the EA is allowed 
to process without achieving a fitness improvement. If g′ denotes the number of generations 
elapsed from the last fitness improvement, then the EA would stop as soon as g′ > gstall. The 
EA effectively stops as soon as either of the two conditions is verified. 
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Return Value. The return value of the EA is the genotype Bestζ  of the Best Fit 
individual found during evolution. This genotype is readily decoded into the corresponding 
phenotype matrix BestZ , which in turn yields the final clustering result for the RL problem. 

Memory Usage and Parameters Values. Storing a whole population of candidate 
solutions determines the EA memory overhead. As population size is kept fixed during 
evolution, if n denotes the size of the data sets to be matched then memory usage grows like 
nind × n, i.e. almost linearly with n. Indeed, only a weak (less than linear) dependence of nind  
on n is expected. As a matter of fact, all the case studies listed in Section 6, despite their n 
values span over nearly an order of magnitude, have been carried out with the following 
default values for the EA parameters: nind = 300, ngen = 200, pmuta = 0.1, gstall = 50. 

 
 

6. Experiments 
Here we present an experimental evaluation of our mixture based suite of methods. Our 

focus will be on effectiveness; however, with respect to time complexity, we point out that 
our methods perform quadratically in the input data sets size (see equations (13), (17) for 
the fitting phase and (37), (38) for the clustering phase). Experiments have been carried out 
by using a comprehensive software system that implements all the methods proposed in the 
previous sections. We developed the system in the R programming language (R 
Development Core Team, 2009). All experiments have been run in an ordinary PC 
environment, equipped with: Windows XP 64 Operating System, 4 GB RAM, 2 GHz CPU. 

We shall describe 9 RL instances involving 5 very different data sources. Indeed, a 
major aim of this section is to verify the robustness of our system against variations of the 
main characteristics of the RL problem. These include: data set size, Match rate (i.e. 
fraction of pairs that are Matches), type of records to be matched, number and 
discrimination power of variables used to compute distance measures, error rates affecting 
such variables, tendency of Unmatches to be similar even for clean data. 

 
6.1 Experimental Setup 

We first introduce the quality measures that we are going to use to assess the 
effectiveness of our RL system. We completely agree with (Christen et al., 2007) and hence 
avoid the Accuracy measure that, due to the huge class-skew inherent in RL problems, 
always gives a misleading impression of high effectiveness. On the contrary we choose to 
rely on traditional Precision (Prec) and Recall (Rec) measures. Moreover, whenever a 
single quality measure will be needed, we shall select the F-measure, 

)Rec2/(Prec=F 11 −− + . Notice that the F-measure is a conservative quality measure, as it 
can reach an high value only when both Precision and Recall are high. 

A fundamental issue influencing our testing strategy concerns the distance function to 
be used in the RL process. As it should be clear from the previous sections, our mixture 
based approach does not rely on any restrictive assumption on the distance function (other 
than supposing it has unidimensional values). Therefore, our RL system can cope with 
every distance function (vectorial measures can easily be handled by averaging their 
components in a suitable way). Anyway, it is obvious that the choice of adopting a distance 
function rather than another for a specific RL task, can (and in general will) affect the 
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quality of the results. This is simply because, as a very rich literature in the RL field 
confirms (Elmagarmid et al., 2007), some distance functions are abler than others to capture 
some specific aspects of a given RL task. Nevertheless, since the comparison of alternative 
distance functions is completely beyond the scope of the present research, we shall use just 
a single distance for each RL instance. As a consequence, when reporting the quality of our 
results, the problem would arise of understanding how much of that quality actually 
depends on our methods, and how much, instead, on the adopted distance function. In other 
words, as the choice of the distance is just a free input for our system, we would like to 
build some kind of performance measure that is able to factorize the influence of the 
distance function. We developed such a “distance-independent” quality measure by 
exploiting what we call the ‘Optimal Threshold Fully Supervised’ classifier (OTFS). 

The OTFS is a theoretical device. It is a ‘Threshold’-based classifier in the sense that it 
classifies as Matches all the pairs with distance below a given threshold, and as Unmatches 
all the pairs above it. It is ‘Fully Supervised’ because it has full access to the true class 
labels of all pairs. It is an ‘Optimal’ classifier as, by knowing in advance the true results of 
the RL problem, it determines its classification threshold in such a way as to maximize the 
F-measure.14 How to exploit the OTFS is easily understood. Indeed, given a quality metric 
Q (where Q ∈ {Prec, Rec, F}), an approximately distance-independent measure of Q for 
our system can be computed as: 

)(Q)/(Q= OTFSSYSQ distdistΛ                   (39) 

where both classifiers, our system (SYS) and the OTFS, rely on the same distance function dist. 
We believe, in fact, that, even though both the numerator and the denominator in (39) depend on 
the choice of the distance, these dependencies will almost completely cancel out in the ratio. 

 
6.2 Data Sources and RL Instances 

Now we briefly describe the 9 proposed RL instances and the underlying 5 data sources, 
to which we shall refer as Restaurants, Parks, Cens, Physics and PES. Table 1 reports 
some basic information concerning these RL instances. With the only exception of Cens, 
all RL instances involve real-world data. All these problems are very hard, as indicated by 
(though not exclusively due to) their very low Match rates. 

For all problems we choose the Levenshtein distance. When more than one matching 
variable is used, the following averaging procedure is adopted to obtain a scalar distance 
value. Call ),,(= 1

P
n

jjj dd Kd  the distance values measured with respect to the j-th 
matching variable on the nP pairs,15 and denote their mean and standard deviation with jμ  
and jσ . First, standardize these values and sum the standardized scores: 

])/[(= jjj
j

σμ−′ ∑ dd . Then, simply normalize the obtained values in such a way that 
they fall inside the interval [0, 1], namely )](min)(max)]/[(min[= ddddd ′−′′−′ . 

⎯⎯⎯⎯⎯⎯ 
14 Notice that knowing in advance the true results of the OM problem is in general not sufficient for the OTFS to find a 

perfect classification threshold such that F = 1. Indeed, this is possible only if the histograms of the M and U distance 
distributions do not overlap at all. 

15 Whenever a variable had a missing value in one (or both) the records of a pair, we set the corresponding distance 
contribution to the blind average value 0.5. 
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Table 1 -  Relevant Features of RL instances 

RL 
Instance 

Data Origin Matching 
Variables

Data/Error Nature Pairs
(nmin x nmax)

Matches Match 
Rate 

Rest1 Riddle name 
address 

city 
type 

Real/Real 176,423 
(331 x 533) 

112 6.3E-4 

Rest2 Riddle name Real/Real 176,423 
(331 x 533) 

112 6.3E-4 

Parks SecondString name Real/Real 101,394 
(258 x 393) 

247 2.4E-3 

Cens SecondString surname 
name 

midinit 
number 
street 

Artificial/Artificial 176,008 
(392 x 449) 

327 1.9E-3 

Phys1 lanl.arXiv.org title Real/No 388,080 
(588 x 660) 

88 2.3E-4 

Phys2 lanl.arXiv.org title Real/Artificial 388,080 
(588 x 660) 

88 2.3E-4 

PES1 Istat surname
name
sex

birth.dd
birth.mm

birth.yyyy

Real/Real 1,033,272 
(1,016 x 1,017) 

984 9.5E-4 

PES2 Istat surname
name
sex

birth.dd
birth.mm

birth.yyyy

Real/Real 4,044,040 
(2,002 x 2,020) 

1,954 4.8E-4 

PESfull Istat surname
name
sex

birth.dd
birth.mm

birth.yyyy

Real/Real 32,876,434,096 
(180,133 x 182,512) 

172,621 5.3E-6 
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The Restaurants source, available at the RIDDLE16 repository, contains restaurant 
records affected by real-world errors. It is used for two different RL tasks, Rest1 and Rest2. 
They differ in the number of matching variables: Rest1 uses 4 variables, name, address, 
city and type, while Rest2 relies only on the name variable. 

Both Parks and Cens sources are provided by the SECONDSTRING package.17 Records in 
the Parks RL instance represent U.S. National Parks and the name of the park is used as 
the only matching variable. The Cens source, originally provided by William Winkler, 
contains synthetic census-like records; the corresponding RL instance relies on 5 matching 
variables: surname, name, midinit, number and street. 

The Physics source refers to two partially overlapping selections of scientific papers in 
the field of high-energy physics.18 These selections stem from two queries that have been 
intentionally designed to retrieve papers with very similar titles (even when papers are 
different). Accordingly, the Physics source is used for two different RL tasks, Phys1 and 
Phys2, both constrained to adopt the title field as the only matching variable. The Phys1 
task involves the original clean data, whereas artificially generated random errors have been 
introduced in Phys2. This has been accomplished as follows. Each record from both data 
sets had a probability of 1/3 to be perturbed; for each selected record, first a number ν , 
ranging from 0 to the length of its title string λ , has been drawn from a Binomial 
distribution with size λ  and success probability 1/6; then a random sample of ν  characters 
drawn from the original title has been replaced by ν  new random character values. The 
overall proportion of perturbed characters is about 6%. 

PES1, PES2 and PESfull involve data coming from the Post Enumeration Survey (PES) 
carried out by the Italian National Institute of Statistics to estimate the coverage rate of the 
2001 population Census. Therefore, all the three RL instances deal with real-world data 
affected by real-world errors, including missing values. Each one of these RL tasks entails 
the matching of two lists of people, the first collected by the Census and the second by the 
PES; moreover for all the three RL tasks the same 6 matching variables are used: 
surname, name, sex, birth.dd, birth.mm and birth.yyyy. Both PES1 and 
PES2 tasks deal with a sample of enumeration areas belonging to the province of Rome, 
while PESfull faces the RL problem for the whole PES data. 

As Table 1 shows clearly, PESfull represents a severe test-bed for assessing the practical 
feasibility of our methods when very large data sets are involved. Being the comparison-
space so huge (about 33 billions of pairwise distances), a preliminary blocking step has 
been performed. The enumeration area code was selected as blocking variable. Since this 
variable was believed to be accurate (i.e. almost not affected by errors), the blocking step 
was expected to quickly filter-out pairs belonging, with high probability, to the U class. 
From a computational complexity point of view, the net result of the blocking phase was to 
transform the original, global RL task (which was not affordable) into a sequence of 

⎯⎯⎯⎯⎯⎯ 
16 http://www.cs.utexas.edu/users/ml/riddle/index.html 
17 http://www.cs.utexas.edu/users/ml/riddle/data/secondstring.tar.gz 
18 http://xxx.lanl.gov/find/hep-ph, queries issued on 03/19/2009: 

Keyword query 1 = abstract:(QCD and infrared) 
Keyword query 2 = abstract:(QCD and confinement) 
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smaller, independent RL subtasks, one for each block. The overall number of processed 
blocks was 1,098. Correspondingly, the size of the comparison-space decreased from about 
33 billions to about 86 millions pairs. 

 
6.3 Results 

For all the 9 instances described above, we ran our system choosing to solve the RL 
problem with the Maximum Likelihood objective. Though our system is able to deal also 
with the Minimum Cost objective, we did not consider this possibility in the experiments 
because: i) such a choice would have negatively affected the understanding and the 
comparability of our results; ii) the specification of misclassification costs is an application 
specific task. 

The results are collectively shown in Table 2. It has to be stressed that, since PESfull is 
the only instance for which we used our RL system after a preliminary blocking step, and as 
every comparison-space reduction technique is a possible source of bias in the RL results, 
we excluded PESfull from the computation of the average performances reported in Table 2. 

 
Table 2 - Precision, Recall and F-measure Results for the Proposed RL System (SYS) 

 Precision Recall F-measure 

RL Instance OTFS SYS ΛPrec OTFS SYS ΛRec OTFS SYS ΛF 

Rest1 0.941 0.933 99.1% 0.857 0.866 101.0% 0.897 0.898 100.1% 

Rest2 0.988 0.793 80.2% 0.759 0.786 103.5% 0.859 0.789 91.9% 

Parks 0.934 0.971 103.9% 0.923 0.960 103.9% 0.929 0.965 103.9% 

Cens 0.859 1.000 116.4% 0.911 0.982 107.8% 0.884 0.995 112.6% 

Phys1 1.000 0.854 85.4% 1.000 1.000 100.0% 1.000 0.921 92.1% 

Phys2 0.964 0.907 94.1% 0.909 1.000 110.0% 0.936 0.951 101.7% 

PES1 0.969 0.998 102.9% 0.997 0.996 99.9% 0.983 0.997 101.4% 

PES2 0.993 0.997 100.4% 0.984 0.996 101.2% 0.988 0.997 100.8% 

PESfull - 0.999 - - 0.992 - - 0.996 - 

Average* 
Performance 0.956 0.932 97.8% 0.918 0.948 103.4% 0.934 0.939 100.6% 

(*): Average values have been computed excluding the PESfull instance (see text). 
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A first look to the average Precision (0.932), Recall (0.948), and F-measure (0.939) 
performance immediately reveals the remarkable effectiveness of our system. Moreover, 
our systems exhibits also a very good robustness: Precision, Recall, and F-measures scores 
never significantly fall below 0.8, despite the addressed RL instances where deliberately 
selected to be very different. 

Turning the attention to the “distance-independent” version of the three quality metrics 
(Λ columns, bold figures in the table), we observe that i) their average values are 
impressively high, ΛPrec = 97.8%, ΛRec = 103.4%, ΛF = 100.6%, and ii) all of them never 
fall below 80%. Again, these results strongly support the robustness of our methods. It is 
also interesting to note that the F-measure scores achieved by our system even outperform 
the OTFS classifier in 6 cases out of 8. 

The Rest2 instance gives us the opportunity to compare our system with at least one 
previous proposal. Indeed, Rest2 exactly corresponds to one of the several RL instances 
considered in (Chaudhuri et al., 2005): same data sets (Restaurants), same matching 
variables (just name) and same distance function (Levenshtein distance). For this RL 
instance, authors of (Chaudhuri et al., 2005) present a Precision vs. Recall graph obtained 
when varying the parameters of their algorithms. Though the corresponding quality scores 
are not explicitly provided, it is possible to deduce from the aforementioned graph that, by 
fine-tuning parameters, their methods reach a maximum F-measure of about 0.54. We point 
out that our parameter-free system achieves an F-measure score of 0.789 for Rest2, which 
means a relative gain in effectiveness of nearly 50%. 

Moreover, our system also exhibits a very satisfactory behavior for the PESfull instance, 
from both the points of view of effectiveness19 and computational efficiency. Indeed, on the 
one hand, the obtained Precision (0.999), Recall (0.992), and F-measure (0.996) scores are 
excellent. On the other hand, the run time performance of our system turned out to be very 
good. The overall execution time for processing about 86 millions of pairs, partitioned into 
1,098 blocks, was 293 minutes (i.e. less than 5 hours) corresponding to an average 
processing time of about 2×10-4 seconds per pair. 

 
 

7 Conclusions 
In this paper, we presented a novel approach to the RL problem based on mixture 

models. Several original contributions enable our methods to be at the same time effective 
and fully automated. We validated our suite of methods by testing its Precision, Recall and 
F-measure scores on real data sets, obtaining excellent results. Our extensive experimental 
study, which deliberately involved very different RL instances, also showed the remarkable 
robustness of our methods. 

⎯⎯⎯⎯⎯⎯ 
19 For the PESfull instance, running the OTFS was computationally unfeasible (whence the lacking scores in Table 2). This 

is because the OTFS cannot be used after a blocking step: indeed, by definition, it has to process the distance 
distribution of all the pairs as a whole. 
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