
The package

LabourMarketAreas

Daniela Ichim

Istat, Department of Production Statistics

ichim@istat.it

The story

Installing LabourMarketAreas

Content and how to use it

 objects, constraints, possible extensions

Next steps

Summary

1. Istat releases LLMA since 1981.

2. 2013 Eurostat TF on Harmonised European Labour

Market Areas.

3. April 2014: the CBS script “livework-cluster.r” has been

made available to TF members.

4. April 2014: a script in Java developed by Dev-stat

implementing the Coombes and Bond (2007) algorithm

has also been provided to the TF members.

…

Story

5. June 2014: Istat modified the original code by CBS in

order to reproduce the output of the Java code. The

script was shared with the TF members.

6. January 2016: Istat implemented a faster version of the

R-script. The script was shared with the TF members.

7. June 2016: Istat releases the R-package

LabourMarketAreas version 1.0.

Aim

May 2017: LabourMarketAreas - version 2.0

Story

Script

 - a list of commands performing some actions

 - functions have to be loaded

 - different valid versions may exist even on the same PC

 - the documentation is optional

Package

 - a set of functions

 - different versions may still exist, but

 at least a change of the package name/version is required

 there is an warning about functions overlapping

 - the original version is always available. To everyone.

 - generally, the “official” version is stored on a repository

 - the documentation is mandatory

Script-package

It should be an 𝛼 – version.

We are available for any type of discussions/advice/problems etc

We tested it on Italian data, i.e. all we have. Other data, may

raise other problems.

Please report (us) errors, failures and … successes. We’ll improve

together the European LMAs.

The script will be no more maintained.

Package LabourMarketAreas

LabourMarketAreas is just another R-package.

Usual procedures for installation and removing.

Download Install R and Rstudio

https://www.r-project.org/

https://www.rstudio.com/

(both are free)

Installing the package

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/

Usual procedures for installation and removing.

From the R console:

 Install

 install.packages(“YourPath\\LabourMarketArea
s.zip”)
 Uninstall

 remove.packages("LabourMarketAreas",
lib="~/R/win-library/3.2")

Installing the package

Package description

The R package LabourMarketAreas – Daniela Ichim, Nuremberg, June 2016

> packageDescription("LabourMarketAreas")
Package: LabourMarketAreas
Type: Package
Title: LabourMarketAreas Version: 1.0
Date: 2016-06-07
Author: Daniela Ichim, Luisa Franconi, Michele
D'Alo', Guido van den Heuvel
Maintainer: Luisa Franconi <franconi@istat.it>
Description: Produces Travel-To-Work-Areas from
commuting flows data frame by means of the version of
the TTWA algorithm described in Coombes and Bond
(2008).
Depends: R (>= 3.01), data.table (>= 1.9.6)
License: GPL (>=2)
LazyData: true
Built: R 3.1.3; ; 2016-06-07 14:12:24 UTC; windows

-- File: PATH/LabourMarketAreas/Meta/package.rds

>

The package description may be modified only by the

authors.

The package LabourMarketAreas was built and tested

ONLY on Windows.

The package LabourMarketAreas is free, but there is a

licence.

Package description

The R package LabourMarketAreas – Daniela Ichim, Nuremberg, June 2016

Licence

> RShowDoc("COPYING")
…
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
……
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
…
Also, for each author's protection and ours, we want to make
certain that everyone understands that there is no warranty
for this free software. If the software is modified by
someone else and passed on, we want its recipients to know
that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors'
reputations.

Package data.table – renders faster the implementation

(IT 3 days to 3 hours; UK: 5 weeks to 1.5 day)

Speed is important, but not everything.

Anyway, speed allows us

 to test different parameters set

 early error discovery

 better analyze the input and output data

Dependencies

LabourMarketAreas installation

 - install data.table (from CRAN web-site)

 - install LabourMarketAreas

 - when it will be stored on CRAN, it will be sufficient to

install LabourMarketAreas accepting the installation of

dependencies

Dependencies

LabourMarketAreas inherits from data.table:

 - syntax

 - advantages and drawbacks

Syntax

 - LabourMarketAreas is implemented using the data.table

syntax. To modify any function in LabourMarketAreas, a

minimum knowledge of the data.table syntax is required.

 - Without data.table, the core functions of the algorithm will not

run.

> library("LabourMarketAreas")
Automatically loads the package data.table

Dependencies

> ?LabourMarketAreas
Description

Makes Travel-To-Work-Areas from commuting flow data ….

Details

Package: LabourMarketAreas

Type: Package

Version: 1.0

Labour market areas (LMAs) are sub-regional geographical

areas

Author(s)

Daniela Ichim, Luisa Franconi, Michele D'Alo' and Guido van den

Heuvel

Maintainer: Luisa Franconi <franconi at istat.it>

References

[1] Coombes, M. e Bond, S. (2008).

….

Package description page

Content and Help pages

Datasets: Sardinia, names.Sardinia

The iterative algorithm: findClusters

Utility functions

 algorithm: determineCohesion,

 determineRegroupList, dissolveCluster,

getLeastSelfContained, mergeCluster,

regroupDissolved, regroupDissolved.ncom

 input:

 output: AssignLmaName, LMAwrite

Package objects

http://127.0.0.1:9799/help/library/LabourMarketAreas/html/Sardinia.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/names.Sardinia.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/findClusters.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/determineCohesion.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/determineRegroupList.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/dissolveCluster.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/getLeastSelfContained.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/mergeCluster.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/regroupDissolved.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/regroupDissolved.ncom.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/AssignLmaName.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/LMAwrite.html

Datasets: Sardinia, names.Sardinia

> data(Sardinia)
> data(names.Sardinia)

Datasets

http://127.0.0.1:9799/help/library/LabourMarketAreas/html/Sardinia.html
http://127.0.0.1:9799/help/library/LabourMarketAreas/html/names.Sardinia.html

They are the flows occurred in Sardinia according to the Italian

2001 population census.

The entire dataset is available on the Istat web-site, but it is

not part of the LabourMarketAreas package the data should

be first loaded in R.

They may be used to test and develop

 package functions

 other functions

 other tools

Datasets

Fastest way:

In the R console:
>library(data.table) # if not already loaded
>mydata=fread(“path\\filename.csv”)

?fread

fread is a data.table function used for fast reading data from

delimited files.

It automatically detects the separator and the header lines.

 Load your own data

findClusters

This function implements the iterative algorithm, as described

in Franconi, D’Alo, Ichim, Istat implementation of the algorithm

to develop Labour Market Areas.

findClusters

Includes some input and output utility functions.

findClusters

> ?findClusters

findClusters

LWCom = the flows data.frame/data.table

minSZ = a numeric value

tarSZ = a numeric value

minSC = a numeric value

tarSC = a numeric value

verbose = a logical value

sink.output = a character value

An error is produced when the above rules are not satisfied.

NO DEFAULT VALUE!

findClusters
LWCom

The column names are ESSENTIAL:

community_live, community_work, amount.

The order is not important.

NO MISSING VALUES.

community_live and community_work MUST be positive integer

vectors.

amount may be whaterver number.

findClusters

In future versions, some controls on the previous rules will be

added:

 - input variables type

 - names of the input variables

 - missing values

 - integer values of community_live, community_work

In future versions, some statistics on the input flows may be

added (even outside the function findCluster):

 - number of communities

 - number of traits

 - mean number of input/output traits/flows per community

findClusters – input utilities

out=findClusters(Sardinia,1000,0.6667,10000,0.75)

LWCom <- data.table(LWCom) ##LWCom is Sardinia in this example

Contrary to the script, the input flows are NOT read inside the

findClusters function.

The input flows object must exist before the function

findClusters is used.

There is no utility for this action (in this version).

It doesn’t matter how you provide LWCom, it will be

transformed in a data.table object.

findClusters – input utilities

…
LWCom = LWCom[order(community_live)]

LIST.COM = data.table(c(LWCom[,community_live],
LWCom[,community_work]))
LIST.COM = unique(LIST.COM)[order(V1)]

The list/set of communities is derived from the input flows

object. It is not possible to read the list of communities from an

external source.

Hence it is assumed that when a community is not registered in

the input flows object (either as community_live or

community_work), it should not be considered by the algorithm.

(the algorithm is self-contained)

findClusters – input utilities
…
residents = setcolorder(LWCom[, .(residents =
sum(amount)), by = .(Code = community_live)],
c("residents", "Code"))
residents = merge(residents, LIST.COM, by.x = "Code",
by.y = "V1", all = T)
residents[is.na(residents), `:=`(residents, 0)]

… and a similar block for “workers”.

For each community, the residents and the workers are

computed from the input flows object. Contrary to the script,

there is no way to load this information from an external source.

(the algorithm is self-contained).

findClusters – input utilities
…

Create the first piece of output
zero.list
?findClusters #/ section Value

… in practice, IDs, flows, residents and workers of whatever

community having no residents and/or workers.

A warning is printed on the console. zero.list object is

included in the output.

findClusters – input utilities
…

Fictitious community and its fictitious flows.
fict.community = LIST.COM[, max(V1) * 10]
LWCom= rbind(LWCom,data.table(matrix(rep(fict.community,
ncol(LWCom)), 1)), use.names = F)
…

The fictitious community should not exist in the LIST.COM.

We chose to multiply the maximum community id by 10.

The community_live and community_work codes (ids) MUST

be numerical values. As all joins are made by these ids, they

should be integer values.

There is no check on these rules in version 1.0. If needed, in

future versions it will be added.

findClusters – input utilities
Fictitious community and its fictitious flows.

Not evaluated/implemented:

The fictitious cluster is a cluster. It is a particular cluster.

In the algorithm, the fictitious community is never “dissolved”. It

might only “receive” some communities.

We called it “fictitious” because it was created inside the

findClusters function, but it may be loaded from an external

source. In such situation, it would be a cluster that is never

dissolved. This option might allow you to find partitions

containing a pre-defined area. (see also later)

In version 1.0, a single fictitious community is considered. If

such an extension is valuable, different “do-not-dissolve”

starting communities might be dealt with (version XXX.0).

findClusters – initialize output

We must know what we want.

The core output is a list of several data.frames/data.tables

grouped in lists.

The first list called clusterData:

 - clusterList

 - LWClus

 - marginals

The remaining pieces of the output contain information about

the application of the algorithm (zero.list, reserve.list, etc).

The output is a list because in R, functions may have an unique

output.

findClusters – initialize output

clusterList - allocation of each community to the corresponding

lma.

Initially, each community is

a distinct lma.

At the end, it contains the

allocation of each community

to an lma.

findClusters – initialize output

LWClus- flows between LMAs.

Initial Final

findClusters – initialize output

marginals - main characteristics of the LMAs.

Initial Final

findClusters – the iterative process

The elements of the first list are iteratively modified simultaneously.

findClusters – initialize output

The first list called clusterData:

 - clusterList - LWClus - marginals

At this stage, no missing values are allowed: rows containing

missing values in either column community_live,

community_work, amount are cancelled.

The entire input data is used: in this version, there is NO way to

subset it.

Possible ways of subsetting:

 - amount (flow) above/below a given threshold

 - selected communities

 - self-flows (community_live=community_work)

 - commuters to/from abroad

findClusters – initialize output
…
counter <- 1
reserve.list = list()
counter.list = 1
ComNotAssigned.list = list()

reserve.list
Communities that do not improve the value of the validity when assigned to

the dominating cluster or that do not have a dominating cluster are put into

the reserve list.

ComNotAssigned.list
Components: integer containing the id of the community in the reserve list

that the algorithm was not able to assign to any existing cluster. One list for

each of such community. NULL otherwise.

findClusters – the iterations
repeat{
...
}

Repeat

1. Find the least validity cluster.

2. Dissolve it

3. Assign each community to its dominant cluster.

Until the validity condition is satisfied.

YES NO

YES

YES

Evaluate validity (formula 1)

validity condition

satisfied for all

Identify cluster to be

disaggregated

community

n = 1

End

Identify

dominant

cluster

Assegn to dominant

cluster

-

-

Aggregate cluster (n - 1

communities)

STOP

findClusters – the iterations

findClusters – the iterations
repeat{
...
}

At each iteration, the input is a clusterData struture.

At each iteration, the output is a clusterData structure

findClusters – the iterations

Repeat

1. Find the least validity cluster.

2. Dissolve it

3. Assign each community to its dominant cluster.

Until the validity condition is satisfied.

We need:

 - a validity function

 - a strategy to dissolve clusters

 - a way to identify a dominant cluster

findClusters – validity function

1 − 1 −
𝑚𝑖𝑛𝑆𝐶

𝑡𝑎𝑟𝑆𝐶
∙ max

𝑡𝑎𝑟𝑆𝑍 − 𝑆𝑍

t𝑎𝑟𝑆𝑍 − 𝑚𝑖𝑛𝑆𝑍
, 0 ∙

min(𝑆𝐶, 𝑡𝑎𝑟𝑆𝐶)

𝑡𝑎𝑟𝑆𝐶

getLeastSelfContained(LWClus, marginals, minSZ, minSC,
tarSZ, tarSC)

 - excludes flows to/from unknown clusters (missing)

 - excludes flows to/from cluster zero

 - the validity of cluster zero is always equal to 1 (that’s why

it is never dissolved)

 - computes the validity of each cluster

 - returns the cluster corresponding to the minimum validity

value and its validity

 - returns the computations performed for each cluster

findClusters – validity function

The R package LabourMarketAreas – Daniela Ichim, Nuremberg, June 2016

obj= getLeastSelfContained(LWClus, marginals, minSZ,
minSC, tarSZ, tarSC)

findClusters – validity function

obj= getLeastSelfContained(LWClus, marginals, minSZ,
minSC, tarSZ, tarSC)

> obj[[1]]
cluster validity

1: 179 0.2007328
> View(obj[[2]])

findClusters – validity function

obj= getLeastSelfContained(LWClus, marginals, minSZ,
minSC, tarSZ, tarSC)

A unique minimum is returned.

Multiple minimum values may be dealt with, but different

distinct clusters should be simultaneously dissolved (how to

identify the dominant clusters?). Is this a common or rare

situation?

At each iteration, the validity function is computed for each

cluster.

An improvement (smaller datasets) could be achieved by

evaluating the validity ONLY for the clusters involved in the

latest dissolving/assignment operations.

findClusters – the iterations

If there are multiple communities in the minimum validity

cluster, they are ordered in decreasing order by

NoToFrom + residents - live_work (incoming workers but not

from the same cluster)

YES NO

YES

YES

Evaluate validity (formula 1)

validity condition

satisfied for all

Identify cluster to be

disaggregated

community

n = 1

End

Identify

dominant

cluster

Assegn to dominant

cluster

-

-

Aggregate cluster (n - 1

communities)

STOP

findClusters – dissolveCluster

Repeat

1. Find the least validity cluster.

2. Dissolve it

3. Assign each community to its dominant cluster.

Until the validity condition is satisfied.

dissolveCluster(clusterData, cluster, LWCom)

This function dissolves a selected cluster into its constituent

communities. Such communities are given temporary cluster

IDs: negative integers (that’s why the original IDs must be

positive integer numbers).

Input: a clusterData structure

Output: a clusterData structure (some clusters have negative

IDs)

findClusters – regroupDissolve

Repeat

1. Find the least validity cluster.

2. Dissolve it

3. Assign each community to its dominant cluster.

Until the validity condition is satisfied.

regroupDissolved(clusterData)

YES NO

YES

YES

Evaluate validity (formula 1)

validity condition

satisfied for all

Identify cluster to be

disaggregated

community

n = 1

End

Identify

dominant

cluster

Assegn to dominant

cluster

-

-

Aggregate cluster (n - 1

communities)

STOP

findClusters – regroupDissolve
regroupDissolved

Input: a clusterData structure

Output: a clusterData structure (no clusters with negative IDs)

 or 1 (the reserve list is the only candidate cluster)

Two internal functions are called:

determineRegroupList

determineCohesion

As for the validity function, an unique dominant cluster is

identified.

Multiple maximum values may be dealt with,

 but a further criteria is strictly required

Is this a common or rare situation?

𝐿ℎ𝑘 =
𝑓ℎ𝑘

2

𝑅ℎ𝑊𝑘
+

𝑓𝑘ℎ
2

𝑅𝑘𝑊ℎ

findClusters – regroupDissolve
regroupDissolved

Come back to the fictitious community:

If there is no dominant cluster, the community is assign to the

reserve.list. It means that the reserve.list is the last option.

Not implemented:

If the fictitious community (reserve.list) is a pre-defined cluster

which is never dissolved and it is always the last option, this

might be an option to deal with very large communities (Paris,

London …):

 a new community is assigned to these large communities

(pre-defined areas) ONLY if there is no other option (link to

other communities/clusters).

The algorithm

In two words:

 Step 0. Define a validity function. Define a cohesion

function. Each community is a cluster.

 Step 1. Identify the minimum validity cluster C not satisfying

the validity condition.

 Step 2 For each community c_i in C,

 Step2.1 Find the dominant cluster D.

 Step 2.2 Temporarily assign the community to D.

 Step 2.3 If the validity of D is improved w.r.t. the

previous situation, the assignment is definitive. Otherwise, c_i

is saved into the reserve list

The algorithm

In case of multiple communities in the minimum validity cluster C

- consider the communities in the dissolved cluster C, use the

order defined above (NoToFrom + residents - live_work),

- the first community is assigned to a cluster D.

- If D=0 (reserve list), then all the other communities in the

dissolved cluster are assigned to their corresponding clusters

(they may be different clusters --- there is no constraint).

 - If D!=0, the dissolved cluster C is regrouped. The regrouped

cluster will contain all the communities, except the first one in C

(the one which was already assigned).

Output utilities

Inside findClusters

AssignLmaName

WriteLma

Output utilities

Inside findClusters

At the end of the algoritm:

1. - eliminate the fictitious community (not the reserve.list)

2. - save the partition into clusterDataBeforeZeroCluster
3. - try to assign the communities in the rerserve.list to

“standard” clusters - the validity of such clusters is reduced

4. - save the partition clusterData
5. - compute some statistics for both clusterData
• - the validities of the clusters

• - self-containment (supply and demand)

1. - assign final names to variables

2. - computes the number of communities in each cluster

Output utilities

AssignLmaName

This function assigns names to the labour market areas given

their codes.

The lma name corresponds to the community name

(elementary area or municipality) having the highest number of

jobs among all the communities in the lma.

The community names are in lowercase, except the the first

letter.

The lma names are in uppercase.

See names.Sardinia for example.

Output utilities

WriteLma

This function saves the lists composing the output of the lma

package into separate data frames as .RData.

The files are saved in the path_wd directory. (your working

directory)

The main output, the characteristics of the created labour

market areas and the characteristics of the areas before the

final assignment of the reserve list - are also saved in a .csv

file.

Output utilities

In the next future:

 - parameters should be included in the output

 - more statistics on the output partition

 - numbers of workers (min,max,mean)

 - number of residents (min,max,mean)

 - number of traits (min,max,mean)

 - modularity

 - statistics on the reserve.list

Output utilities

Find.cluster argument
sink.file

character string containing the name of the .txt file that will

contain optional information for each iteration of the algorithm.

We mainly used this option in the development phase.

If you think it could be useful, we might enrich it. Anyway, the

information about each iteration is saved.

Finally, NO intermediate output (clusterData structures) is

saved.

There is no possibility to start from a pre-defined structure.

(it might be usefull in case of error)

FALSE ERROR

FALSE ERROR

It seems an error, but it is an warning.

This is a data.table feature.

If you look into the data.table help package, we’ll discover

that:

The package data.table especially introduces this kind of

error instead of an warning:
 in order to make efficient joins, particular
situations are warned in this way.

FALSE ERROR

In version 1.0 ,we avoided this situation by using the option

«allow.cartesian=T» where necessary.

Anyway, it is not even a real cartesian product: it just allows us

to perform the join we need.

?data.table

Argument allow.catesian:
«The word 'cartesian' is used loosely in this context»

There might be other ways to deal with this warning: we’ll and

eventually implement in future versions.

WARNINGS

Invalid .internal.selfref detected and fixed by taking a (shallow)

copy of the data.table so that := can add this new column by

reference. At an earlier point, this data.table has been copied

by R (or been created manually using structure() or similar).

Avoid key<-, names<- and attr<- which in R currently (and

oddly) may copy the whole data.table. Use set* syntax instead

to avoid copying: ?set, ?setnames and ?setattr. Also, in

R<=v3.0.2, list(DT1,DT2) copied the entire DT1 and DT2 (R's

list() used to copy named objects); please upgrade to R>v3.0.2

if that is biting. If this message doesn't help, please report to

datatable-help so the root cause can be fixed.

WARNINGS

Don’t worry!

In R, the command

names(MyData.frame)

makes a copy of the object MyData.frame

In data.table, this may be avoided by using other tools.

It means: the implementation could be even faster that it is in

version 1.0.

WARNINGS

In rm(clusterList) : object 'clusterList' not
found
In rm(LWclus) : object 'LWclus' not found
In rm(marginals) : object 'marginals' not
found
In rm(index) : object 'index' not found

Don’t worry!

In order to be sure that the objects are created correctly at

each iteration, sometimes we removed them too many times.

It’s boring, but we’d prefer them in this way. No improvement

could be achieved (removing nothing costs nothing!)

The package

LabourMarketAreas version 1.0 implements

 - an unique validity function

 - an unique cohesion function

In future versions, more validity and cohesion functions may

be added.

Finally - batch

out1=findClusters(LWCom=Sardinia,minSZ=1000,mi
nSC=0.6667,tarSZ=10000,tarSC=0.75,
verbose=TRUE)

LMAWrite(out1,suff=“whateveryouwant”)

out2=findClusters(LWCom=Sardinia,minSZ=1000,mi
nSC=0.6667,tarSZ=10000,tarSC=0.9,
verbose=TRUE)

LMAWrite(out2,suff=“done”)

Next steps

Testing

 Italian cases might not be sufficient

Report the errors/bugs and results

Add some other utilities

 usefull statistics

 visualisation tools

 automatic fine tuning

Add some other functions – validity, cohesion

….

Next steps

Add other features(+testing, reporting, etc)

 - strategies to deal with the fictitious communities

 - contraints

 - on the dimension of LMAs yesterday

 number of communities, inhabitants, workers

 - on overlapping geografies yesterday

 - other contraints

 - distance functions yesterday

 - sensitivity to small changes

 - comparison between partitions

 - enclaves – version 1.0 does NOT deal with the enclaves

…

For further information:

Daniela Ichim, Luisa Franconi, Michele d’Alò

ichim@istat.it

franconi@istat.it

dalo@istat.it

Enjoy the LabourMarketAreas package.

mailto:ichim@istat.it
mailto:franconi@istat.it
mailto:dalo@istat.it

