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Abstract

When imputed values are treated as if they were observed, the precision of the estimates is
generally overstated. In the paper three variance methods under imputation are taken into
account. Two of them are the wellknown bootstrap and Multiple Imputation. The third is
a new method based on grouped jackknife easy to implement, not computer intensive and
suitable when random hot deck imputation is performed. A simulative comparison on real
business data has been carried out. The findings show that the proposed method has good
performances with respect to the other two.

Keywords: Bootstrap, Multiple Imputation, Jacknife, Extended DAGJK, Replicate weights,
Monte Carlo simulation

1. Introduction

Variance estimation has to take into account an additional complexity element: the unit
and item nonresponse that commonly trouble the large scale surveys. Unit nonresponse is
customarily handled by forming weighting classes using auxiliary variables observed on all
the sampled elements. Then adjusting the survey weights of all respondents within a weight-
ing class by a common nonresponse adjustment factor, with different adjustment factors in
different classes (Kalton and Kasprzyk 1986).

Imputation is the commonly used approach to compensate for missing (item nonresponse)
or invalid values in sample surveys (Kalton and Kasprzyk 1986). In the paper the random hot
deck imputation is considered.

When unit and item nonresponse correction is performed extra variability is introduced in
the sampling errors. Modifications of Taylor and resampling methods for contemplating unit
nonresponse are quite straightforward while item nonresponse is a ticklish issue. Analyses
performed on imputed values treated as if they were observed, can be misleading when esti-
mates of the variance do not include the variability component due to imputation. As a result,
the precision of estimates is overstated, and subsequent statistical analyses can be misleading
(e.g., confidence intervals have lower than nominal levels).

The approaches proposed in literature to obtain valid variance estimators in presence of
imputed data are divided according to several classifications. A first common classification
distinguishes among linearization (or Model Assisted techniques see Särndal 1992), resam-
pling (Shao and Tu 1995; Wolter 2007) and the Multiple Imputation (Rubin 1987) methods
being the first two categories used for the complete data variance estimates as well.

The resampling techniques in presence of item nonresponse can be divided according to
the standard classification used for the complete data (Wolter 2007). Then, bootstrap (Efron
1994; Shao and Sitter 1996; Saigo et al. 2001; Shao 2003), balanced repeated replication
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(Rao and Shao 1999), random group (Shao and Tang 2001) and jackknife (Rao and Shao
1992; Rao 1996; Yung and Rao 2000; Chen and Shao 2001; Skinner and Rao 2002; Saigo
2005) methods, can be distinguished.

In the literature there is not a common judgement on which is the best approach or
method. This is the main reason why all these methods are investigated in a lot of differ-
ent contexts involving the sampling design, the estimator, the domains of interest and the
imputation process. Furthermore the dimension of the survey and the type and the number
of parameters to be estimated have to be taken into account. For large scale surveys, the
function to be estimated, the complexity of sampling design, the imputation procedure and
the cost-effectiveness issues drive the choice of a specific variance estimator.

The paper focuses on the operational conditions for implementing the methods in the data
production in Official Statistics. In particular two issue are raised: the setting up of theoretical
framework for applying the method; the computational aspect, that is always troublesome for
large scale surveys.

Three methods are deeply investigated: the bootstrap under imputation, the Multiple Im-
putation and finally a new method based on a jakknife technique. The linearization is kept out
because can be problematic to consider in a standardized data production process in which
the timeliness is a pressing data quality dimension.

Section 2. introduces the three methods. In particular, section 2.1 gives a literature review
on the jackknife techniques with the random hot deck imputation. Section 2.2 proposes a new
variance estimator taking into account the item non responses based on a grouped jackknife
technique. This is the innovative output of the paper. Section 2.3 and 2.4 are respectively
devoted to the bootstrap estimator and Multiple Imputation procedure. In section 3. we com-
pare the three methods by means of a Monte Carlo simulation based on real business survey
data. Some concluding remarks are given section 4.

2. Bootstrap, Multiple Imputation and jacknife techniques with random
hot deck imputation

The variance estimation process under imputation depends on the kind of imputation
procedure has been used. For instance, if a jackknife type estimator has been chosen, the
form of the final estimator can change according to the imputation.

In the paper the hot deck procedure is taken into account. This class of methods is one of
the most popular in the survey sampling. Various specifications of the method are proposed
in the literature. In the simplest form of hot deck imputation, a random sample of size r̄
(the number of nonrespondents) is selected from the sample of respondents to an item y, and
the associated item y values are used as donors. The accuracy of imputation depends on the
nonresponse model (the imputation classes) and on the simple or weighted random selection
of the donors.

Since the hot deck imputation is a form of regression imputation (Kalton and Kasprzyk
1986) the analysis of the variance estimators with this imputation technique is not so restric-
tive.

Eventually, we consider the standard imputation procedures based on real observed val-
ues. Hence, we do not explore variance estimators for the imputation procedures where
imputed values depend on variables already imputed in previous steps (Raghunathan et al.
2001). That means the hot deck imputation classes are defined on the observed values.
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2.1 Jackknife variance methods under imputation

Jackknife variance estimation in presence of item non response has been extensively stud-
ied in literature.

One of the first papers was made by Burns (1990). He proposed to perform a new im-
putation for each jackknife sample according to the same procedure applied on the overall
sample. Then, being n the sample size, the procedure needs n+ 1 imputation steps.

Rao and Shao (1992) showed that the procedure can lead to serious overestimation for
large sample size. They propose a consistent jackknife variance estimator in presence of im-
puted data (for the Horvitz-Thompson estimator) by means of hot deck methods assuming
equal response probabilities within imputation classes. The method is suitable for stratified
random sampling and stratified multistage sampling design even in the general case in which
the imputation classes cut across the sampled clusters. The approach, named adjusted jack-
knife, performs only one single imputation on the full sample and it adjusts the imputed values
for each pseudo-replicate before applying the standard jackknife variance formula for strati-
fied design. Then, the technique is much more efficient in terms of computation with respect
to the Burns approach.

The consistency of the adjusted jackknife (for smooth functions such as totals and means)
is shown assuming equal response probabilities within imputation class and performing inde-
pendently within each class the hot deck imputation.

In presence of variable inclusion probabilities in the stratum (such as in the multistage
sampling designs) the properties holds when the weighted hot deck is implemented. Weighted
hot deck select a donor from the imputation cell with probability proportional to the sampling
weight. Conversely if a simple random sampling is used to select a donor then the estimator,
under imputation, of the target parameter will be biased and it’s variance estimator as well.

The adjusted jackknife method needs for each unit an imputation flag on the data set.
Further enhancements of the adjusted jackknife are given by Rao and Sitter (1995) that

examine the jackknife with ratio imputation in the model based framework. Rao (1996) gives
new results about the adjusted jackknife variance estimator with imputed survey data. As far
simple random sampling is concerned, Rao shows some properties when ratio and regression
imputation are used for estimating totals or means.

In particular, the adjusted jackknife variance estimator is design consistent and it is also
design and model unbiased under the imputation model.

Regarding stratified multistage sampling Rao shows the properties of the adjusted jack-
knife variance estimator when the mean imputation in the imputation classes is used. Within
each imputation class, the weighted mean of the interest variable computed on the respon-
dents is assigned to all missing responses. The technique assumes the best predictor of the
missing values is obtained by a homoscedastic mean superpopulation model. If the model
holds for the respondents and under uniform response within each class the adjusted jack-
knife is design consistent.

Yung and Rao (2000) extend the analysis of the adjusted jackknife variance estimator un-
der imputation when poststratified or generalized regression estimator are used. The weighted
mean imputation and weighted hot deck stochastic imputation within imputation classes have
been studied.

When the weighting classes are the poststrata, the estimator and corresponding jackknife
variance estimator are simply computed on the respondents. The authors show also the jack-
knife estimator when weighting classes cut across the poststrata and they give the proof of
the asymptotic consistency. The property holds also when generalized regression estimator
and weighted hot deck imputation are used.

Furthermore, the authors investigate the properties of the jackknife variance estimators
under weighting adjustment for unit non response. The properties are essentially studied in
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the stratified multistage sampling design. In case of unit non response, the authors assume
a set of weighting classes. Within each class a uniform response mechanism is supposed.
Moreover, non response adjustment is performed before the poststratification adjustment so
that the known totals are benchmarked.

This comprehensive theoretical framework encompassing general point estimators and
unit and item non response makes jackknife techniques appealing .

2.2 The modified Extended DAGJK under hot deck imputation

The adjusted jackknife method has a remarkable reduction of computational effort with
respect to the imputation procedure but it is still computer intensive, because of the number of
replications in the estimation procedure. For reducing the computations a commun strategy
is to combine units into variance strata and perform a grouped jackknife instead of a standard
delete one-unit jackknife (Rust 1985; 1986; Rust and Rao 1996). The family of techniques
delete groups of units rather than one unit at time for reducing calculation effort. The cre-
ation of a replicate group can be done within design stratum or, combining design strata into
superstratum, taking groups of units within superstratum that cut across design strata.

There is limited theoretical guidance on how the grouping should be done and much is
based on heuristic knowledge. A common assumption in the literature is to form equal sized
groups. Moreover, to take into account a nonnegligible sampling fraction, it can be useful to
form superstrata with design strata having similar sampling fractions (Valliant et al. 2008).
Finally, grouped jackknife methods distinguishes themself by the computation of the replicate
weights as well, augmenting the possible variance estimators.

Currently there is no empirical evidence showed in literature, suggesting the best grouped
jackknife. Then we should underline the importance of having evidence of the empirical
properties of these methods in practical applications in the Official Statistics context.

As concern grouped jackknife methods taking into account item nonresponse few have
been written in the literature. Brick et al. (2005) show a grouped adjusted jackknife according
to Rao and Shao approach in case of Horvitz-Thompson estimator. Di Zio et al. (2008)
propose the definition of the the Rao and Shao adjustment and the Delete A Group Jackknife
(DAGJK). Miller and Kott (2011) investigate a DAGJK with imputed data with a different
approach.

In the following we introduce a new method combining the DAGJK technique with the
Rao and Shao adjustment.

Delete A Group Jackknife (Kott 1998; 2001) is a variance estimation technique computa-
tionally less intensive than classical jackknife and it can be applied also in case of large scale
surveys. DAGJK is within the strategies aiming at reducing the number of jackknife repli-
cations, while maintaining adequate precision of variance estimates. It assumes an unique
superstratum formed by all the design strata and the replicate groups have units belonging
to different design strata. Then, the method does not present implications on the definition
of the groups and does not require analysis to form superstrata. This analysis can become
cumbersome for large scale and complex business surveys and may affect the timeliness of
data production. For this reason variance estimation techniques implemented by a sort of au-
tomated process and leading to good statistical results may be preferred to better techniques
but more complex to be implemented.

Consider the stratified simple random sampling commonly used in the business surveys,
where in each stratum h are included Nh units. A sample of nh ≥ 2 units is drawn from
each stratum independently across strata. Let dhk(> 0) be the basic weight of unit k in
stratum h, denoted as hk, the estimator of the parameter of the total θ is θ̂ =

∑
hk∈s dhkyhk,

being yhk the value of the variable of interest. The DAGJK technique divides the overall or
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parent sample, s into Q mutually exclusive replicate or random groups, hereinafter denoted
by s1, . . . , sq, . . . , sQ. Given the subsample sq , the sample sizes in the strata are indicated
as nq

1, . . . , n
q
h, . . . , n

q
L. The complement of each sq is called the jackknife replicate group

s(q) = s − sq , being n(q)
1 , . . . , n

(q)
h , . . . , n

(q)
L the strata sample sizes of s(q). The variance

estimator is based on the following jackknife procedure:

1. units are randomly ordered in each stratum;
2. from this ordering the units are systematically allocated into Q groups;
3. for each unit hk, Q different sampling weights (replicate sampling weights) are com-

puted;
4. given the qth set of the replicate weights the qth replicate estimate is
θ̂(q) =

∑
hk∈s d

(q)
hk yhk.

where d(q)
hk denotes the qth replicate weight of unit hkth ;

5. the DAGJK variance estimation is given by

v(θ̂) =
Q− 1
Q

Q∑
q=1

(θ̂(q) − θ̂)2. (1)

The standard DAGJK replicate weights are given by

d
(q)
hk =

{
dhk, when k ∈ h and no unit of h belongs to group q
0, when k ∈ q
[nh/(nh − nq

h)] dhk , otherwise.
(2)

There is not an optimal value for Q. When the number of random groups has to be
chosen it needs to consider that increasing the number of random groups the variability of the
variance estimation is restricted but the computational effort is augmented. In general, it is
common practice a choice between 15 and 80 (Kott 1998; Rust 1985), considering that when
Q is greater than 15 the Student’s t distribution is approximated quite good by the normal
distribution.

The statistical properties in terms of bias and variability of the variance estimates de-
pends on the values of Q, nh and in the case of WOR designs on the sampling fraction in
each stratum. In the latter case, with large sampling fractions the (1) produces conserva-
tive variance estimates. Neverthless, Kott (2001) shows that even if the finite population
correction factor is negligible but nh < Q for some strata the (1) is still an upward biased
variance estimator. For instance, if all nh > 5 but nh < Q the relative bias of (1) with
weights (2) for Horvitz-Thompson estimator is at most 20%. The upperbound of bias is given
by [Q/(Q− 1)]maxh {nh/[nh − 1]} which is itself bounded by maxh {nh/[nh − 1]}. The
relative upward bias is equal to maxh {nh/[nh − 1]} − 1 = maxh {1/[nh − 1]}.

Kott developed a different expression of the replicate weights defining the Extented
DAGJK (EDAGJK). For the Horvitz-Thompson estimator the replicate weights of EDAGJK
assume the following expression,

d
(q)
hk =

{
dhk, when k ∈ h and no units of h belongs to group q
dhk[1− (nh − 1)Z] , when k ∈ q;
dhk(1 + Z), otherwise.

(3)

where Z2 = Q/[(Q− 1)nh(nh−1)].
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With the Greg estimator the replicate weights are given by w(q)
hk = d

(q)
hk γ

(q)
hk and the repli-

cate qth GREG estimate is θ̂(q)
greg =

∑
hk∈s yhkw

(q)
hk . The correction factor γ(q)

hk may be
calculated according different ways. Let consider the following expressions:

γ
(q)
hk = 1 +

(
X−

∑
hk∈s

xhkd
(q)
hk

)(∑
hk∈s

xhkx′hkd
(q)
hk

chk

)−1
xhk

chk
. (4)

and

γ
(q)
hk = γhk +

(
X−

∑
hk∈s

xhkd
(q)
hk γhk

)(∑
hk∈s

xhkx′hkd
(q)
hk γhk

chk

)−1
xhkγhk

chk
. (5)

Kott (2006) offers some suggestions on the factor has to be used.
In order to take into account item nonresponse in variance estimation, we propose a mod-

ified version of EDAGJK based on the Rao and Shao adjustment for hot deck imputation.
The modified variance estimator is :

v(θ̂I) =
Q− 1
Q

Q∑
q=1

(θ̂(q)
I − θ̂I)2 (6)

where,

θ̂I =
∑

hk∈sR

whkyhk +
∑

hk∈sR̄

whky
∗
hk, (7)

is the estimator with imputed hot deck values y∗hk, being sR and sR̄ the sample of respon-
dents and non respondents.

θ̂
(q)
I is defined as

θ̂
(q)
I =

G∑
g=1

 ∑
hk∈sRg

w
(q)
hk yhk +

∑
hj∈sR̄g

w
(q)
hj

(
y∗hj + ŷ

(q)
Rg − ȳRg

) (8)

in which: g (g = 1, . . . , G) indicates the gth imputation cell; sRg
and sR̄g

are respectively the

respondents and non repondents in the cell g; w(q)
hk are the replicate base or Greg weights. Fi-

nally, ŷ(q)
Rg =

∑
hj∈sRg

w
(q)
hj yhj/

∑
hj∈sRg

w
(q)
hj and ȳ(q)

Rg =
∑

hj∈sRg
whjyhj/

∑
hj∈sRg

whj .
Note that the imputation procedure is performed only on the parent sample.

2.3 Bootstrap variance methods under imputation

Bootstrap method in presence of imputed data has been deeply studied in the relevant
papers by Efron (1994) and Shao and Sitter (1996).

Starting from the evidence that the naive approach (treating the imputed values as ob-
served values and using the standard bootstrap) does not capture the inflation in variance due
to imputation and serious variance underestimation is possible they showed some procedures
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together with reimputing bootstrap datasets. In particular circumstances such approaches de-
fine a valid approximation to the distribution of θ̂I . Let Y be the observed data set, being
the estimator θ̂ = f(Y ), and let θ̂I the estimator with imputed values given by the (7), the
bootstrap variance estimator replaces B bootstrap estimates, θ̂(b) (b = 1, . . . , B), by θ̂(b)

I ,
where the index (b) denote the estimate based on the bth resampling. Each estimate θ̂(b)

I is
computed according to the same procedure implemented for the overall sample.

For the bth bootstrap sample the procedure by Shao and Sitter can be described as follows:

1. draw a simple random sample
{
y

(b)
hk : k = 1, . . . , nh − 1

}
(where yhk denotes the

value of y for the unit k beloging to stratum h) with replacement from the sample
{ỹhk : k = 1, ..., nh}, independently across the strata, where ỹhk = {yhk : (hk)} ∈
sR ∪ {y∗hk : (hk) ∈ sR̄}

2. apply the same imputation procedure used in costructing the imputed survey data. De-
note the bootstrap analogue of θ̂I by θ̂(b)

I

θ̂
(b)
I =

∑
s
(b)
R

w
(b)
k yk +

∑
s
(b)
R̄

w
(b)
k y
∗(b)
k . (9)

where y∗(b)
k is the imputed value using the bth bootstrap data and w(b)

k is nh/(nh − 1)
times the survey weight of unit k.

The bootstrap variance estimator v(θ̂I) when has no explicit form may be approximated
by

v(θ̂I) ≈ 1
B

B∑
b=1

(
θ̂

(b)
I −

¯̂
θ

(b)
I

)2

(10)

in which ¯̂
θ

(b)
I = (1/B)

∑B
b=1 θ̂

(b)
I with b = 1, . . . , B.

Efron (1994) shows that the process generates asymptotically valid variance and distribu-
tion estimator for complex sampling designs. The same result was established in Shao and
Sitter (1996) for stratified sampling with large nh. The assumption of negligible sampling
fraction in each stratum means that the procedure give consistent variance estimator when
with replacement sampling design is implemented. Nevertheless, in business surveys is not
uncommon to define very detailed strata with small sample size. In such cases some pre-
cautions must be taken. The problems is known also when complete data set is used and a
stratified random sampling without replacement is the utilized design. A simple and heuristic
approach is to collapse the original strata forming variance strata. Shao and Sitter investigate
some bootstrap methods that deal with the small nh’s. In particular they analyze the rescal-
ing bootstrap proposed by Rao and Wu (1988) showing that the method does not work with
imputed values.

The simulation study carried out by the authors produces valid approximation with de-
terministic imputation. In case of random imputation, such as hot deck imputation, upward
biased estimates are obtained when some nh are very small.

To overcome the problem Saigo et al. (2001) have developed a third type of modified
bootstrap, the repeated half-sample bootstrap, which together with reimputing bootstrap data
sets produces a valid approximation of the distribution of θ̂I , regardless of whether the impu-
tation is random or not and whether nh is small or not. In the paper by Shao (2003) are well
illustrated the different bootstrap methods and their associated problems.
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Eventually, in Shao and Sitter (1996) for avoiding the complete reimputation process for
each replication has been proposed a slightly different bootstrap method. Such technique
preserves the asymptotic properties except for variance estimate of quantiles.

2.4 Multiple Imputation

Multiple Imputation (MI) was first proposed and thoroughly described in Rubin (1978).
More recently the book by Little and Rubin (2002) offers a concise and complete description
of the method.

MI is a procedure replacing each missing value by an ordered vector composed ofM ≥ 2
possible values. The ordering assumes that the first components of the vectors for the miss-
ing values are used to create one completed data set, the second components of the vectors
are used to create the second completed data set and so on. Each completed data set is
investigated using standard complete-data methods. To analyze the repetitions within one
imputation model to yield a valid inference under the posited reasons for missing data, the
M complete-data based on the M repeated imputations are then combined to create one
repeated-imputation inference.

Let θ̂m and Wm (m = 1, . . . ,M ) be the mth complete-data estimate and its variance of
the parameter θ obtained by imputation under one model for nonresponse. The MI estimate
is given by

θ̄M =
1
M

M∑
m=1

θ̂m. (11)

The variability associated with this estimate has two components: the average within
imputation variance

W̄M =
1
M

M∑
m=1

Wm (12)

and the between-imputation component,

BM =
1

M − 1

M∑
m=1

(
θ̂m − θ̄M

)2

(13)

where with vector θ the (·)2 is replaced by (·)T (·).
The total variability associated to θ̄M is given by

TM = W̄M +
M + 1
M

BM . (14)

With scalar parameter the approximate reference distribution for interval estimates and
significance tests is a t distribution(

θ − θ̄M

)
T
−1/2
M ∼ td, (15)

where the degrees of freedom,

d = (M − 1)
(

1 +
1

M + 1
W̄M

BM

)2

. (16)
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are based on the Satterthwaite approximation (Rubin and Schenker 1986) . An improved
expression of the degree of freedom for small data sets is given, for example, in Little and
Rubin (2002).

An estimate of the fraction of missing information γM about θ due to nonresponse is
given by

γ̂M = (1 + 1/M)
BM

TM
. (17)

Rubin (1987), shows that the relative efficiency of an estimate based on M imputations
to one based on M = ∞ number of imputations is approximately 1 + γ/M to 1, where γ is
the rate of missing information. Assuming a fraction of 50% missing information an estimate
based on M = 3 imputations has a standard error that is about 8% higher than one based
on M = ∞, because

√
1 + 0.5/3 = 1.0801. Schafer (1998) states that unless the fraction

of missing information is higher than 50% there is little benefit in using more than 5 to 10
imputations.

See Kim et al. (2006) for more details on bias of the MI.

2.4.1 Multiple Imputation and the single imputation procedure: the ABB method

A basic issue of the MI is the single imputation method repeated M times. Theoretically,
the method assumes the Ymis’ are M repetitions from the posterior predictive distribution of
Y ’, each repetition being an independent drawing of the parameters and missing values under
appropriate Bayesian models for the data and the posited response mechanism. In practice,
three aspects of the imputation method have to be considered:

• if the underlying imputation model is explicit or implicit;
• if the underlying imputation model is ignorable or nonignorable;
• if the imputation methods is proper or not proper.

The first two concepts are typically dealt with in the single imputation approach as well.
Commonly in the Official Statistic ignorable model are assumed, while we focus on the ran-
dom hot deck method that falls in the method using implicit imputation modeling.

Here the concept of proper/not proper method is introduced. Imputation procedures that
incorporate appropriate variability among the repetitions within a model (explicit or implicit,
ignorable or nonignorable) are called proper (Rubin 1987). The reason for using proper im-
putation methods is that they properly reflect sampling variability when creating repeated
imputations under a model, and as a result lead to valid inferences. For example, assume ig-
norable nonresponse so that respondents and nonrespondents with a common value auxiliary
variableX (i.e. imputation cell) have Y values only randomly different from each other. Ran-
domly drawing imputations for nonrespondents from matching respondents’ Y values ignores
some sampling variability. This variability arises from the fact that the sampled respondents’
Y values at X randomly differ from the population of Y values at X . Properly reflecting this
variability leads to repeated imputation inferences that are valid under the posited response
mechanism. In particular Rubin and Schenker (1986) examined the hot deck procedure with
MI. The imputation method assumes within the hot deck cells responses are missing ran-
domly and the Y ’s are independent random variables with common mean and variance. For
each unit having a missing value M values are imputed. The authors shown the standard hot
deck procedure is not proper and variance with MI performs a variance underestimate. They
proposed the Approximate Bayesian Bootstrap (ABB) for simple random sampling with hot
deck imputation and MI method. Such technique can be viewed as a hot deck imputation
method in the MI context (Kim and Fuller 2004; Kim et al. 2004).
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Let us consider a collection of n units in the specific hot deck cell where there are nr

respondents and nnr = n − nr nonrespondents. The ABB creates M ignorable repeated
imputations as follows. For i = 1, . . . ,M create n possible values of Y by first drawing n
values at random with replacement from the nr observed values of Y , and second drawing
the nnr missing values of Y at random with replacement from those n values. The drawing of
nnr missing values from a possible sample of n values rather than the observed sample of nr

values generates appropriate between imputation variability, at least assuming large simple
random samples at X showing that is a proper method.

The ABB approximates the Bayesian Bootstrap by using a scaled multinomial distribution
to approximate a Dirichlet distribution.

When the imputation cells cut across the sampling strata, unequal inclusion probabilities
should be involved in the procedure. Nevertheless, no literature discusses the applications
of ABB in this context. Some authors suggest (Brick et al. 2005) to disregard the unequal
inclusion probabilities in the ABB. In the simulation below the Y values are drawn at random
with equal inclusion probabilities.

3. Specialized results

A Monte Carlo simulation has been carried out for comparing the modified EDAGJK with
bootstrap and MI. In the simulation a standard sampling strategy for the business survey has
been implemented. The analysis of the results focuses on the statistical properties both with
applicability of the methods in case of a complex survey sampling typically conducted by a
National Statistical Institute.

3.1 The population and the sampling strategy

The simulation is based on the real data of the 2008 Italian enterprises belonging to the
economic activity 162 according to the Statistical Classification of Economic Activities in
the European Community NACE Rev.2 3-digit (number of units N = 21, 231). This sub-
population is surveyed in the Small and Medium Enterprises (SME) survey. The SME is a
yearly survey investigating the profit-and-loss account of enterprises with less than 100 em-
ployed persons, as requested by SBS EU Council Regulation n. 58/97 (Eurostat, 2003) and
n. 295/2008. The Italian target population of the SME survey is about 4.5 millions active
enterprises.

The following target variables have been considered: Changes of inventory of finished
and semifinished products (CIF); Purchase of commodities (PUC); Operating expenses for
administration (OEX); Labour cost (LCO). The values of the four variables have been taken
from the balance sheets (administrative data) for the whole population.

Table 1 gives some summary statistics.

Table 1 - Summary of the target variables

Variables Min. 1st Qu. Median Mean 3rd Qu. Max.
CIF -869300 -3750 -130 -2422 1490 322700
PUC -6631 5514 19710 41880 56230 247900
OEX 0 441 1601 6201 5294 126200
LCO 0 0 0 16700 24270 126500

Figure 1 shows that CIF variable has a symmetric distribution while especially OEX and
LCO have highly skewed distributions.

54 ISTITUTO NAZIONALE DI STATISTICA



RIVISTA DI STATISTICA UFFICIALE N. 1-2/2014

Figure 1 - Distribution of the variables of interest and frequncy of non responses (light colour)

The simulation takes into account of a simplifyed version of the current sampling strat-
egy used in the SME survey. A stratified simple random sampling design and a calibration
estimator have been considered.

Strata are obtained by crossing the size classes and the regions according to the Nomen-
clature of territorial units for statistics NUTS 1 defined by EU. Hence, 20 strata are obtained
as aggregation of the original strata of SME survey. The sample allocation in each stratum
is taken from the allocation of 2008 SME survey. Table 2 shows the population and sample
distribution in each stratum. The overall sample size is n = 908 enterprises.

The estimator calibrates the sampling weights to the number of enterprises and the number
of employed persons at NACE Rev.2 4-digit, size class and NUTS 1 region.

The linear distance function (generalized regression estimator) is considered. Actually,
the logit distance function is used in the SME survey, because it produces nonnegative cal-
ibrated weights. Nevertheless the logit distance has two drawbacks: the convergence is not
guaranteed; it requires a time spending iterative procedure to obtain the calibrated weights.
For these reasons linear distance function has been preferred in the simulation. We point out
that the calibration estimators with linear and logit distance function converge asymptotically
and the simulation results with the linear distance will be coherent with the ones obtained
with the logit distance function.

The main task of the simulation study is to compare different methods of variance esti-
mation for estimators of totals in a complex context, usual in the business survey, such as:
stratified simple random sampling, imputation for item nonresponse and calibration estimator.
The item nonresponses are imputed by means of random hot-deck procedure.

Besides this sampling strategy the simulation regards the variance of the Horvitz-
Thompson (HT) estimator.
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Table 2 - Population, sample distribution and missing rates (%) in the design strata

Strata Number of Number of Sampling Missing rate by variable
(NUTS 1 region by size class) enterprises enterprises rate

in the allocated in CIF PUC OEX LCO
population the sample

NORTH-WEST:(size class<8) 5241 107 0.02 16.75 1.28 7.52 1.97
NORTH-WEST:(9<size class<18) 425 39 0.09 14.59 1.41 3.29 0.00
NORTH-WEST:(19<size class<28) 83 17 0.20 28.92 2.41 8.43 0.00
NORTH-WEST:(size class>29) 38 15 0.39 13.16 5.26 5.26 0.00
NORTH-EAST:(size class<8) 5087 89 0.02 18.28 2.54 9.44 3.07
NORTH-EAST:(9<size class<18) 550 48 0.09 14.18 3.45 6.00 0.18
NORTH-EAST:(19<size class<28) 129 44 0.34 15.50 4.65 7.75 0.00
NORTH-EAST:(size class>29) 55 20 0.36 19.35 3.23 3.23 0.00
CENTER:(size class<8) 3699 145 0.04 19.60 1.14 9.22 1.57
CENTER:(9<size class<18) 297 34 0.11 19.53 2.69 5.05 0.00
CENTER:(19<size class<28) 63 35 0.56 19.35 3.23 3.23 0.00
CENTER:(size class>29) 31 17 0.55 20.79 2.60 10.43 2.78
SOUTH:(size class<8) 3386 128 0.04 17.61 1.14 5.11 0.00
SOUTH:(9<size class<18) 176 45 0.26 13.51 0.00 0.00 0.00
SOUTH:(19<size class<28) 37 23 0.62 26.67 0.00 0.00 0.00
SOUTH:(size class>29) 15 8 0.53 18.64 1.16 10.21 2.83
ISLANDS:(size class<8) 1803 50 0.03 13.48 0.00 3.37 1.12
ISLANDS:(9<size class<18) 89 26 0.29 4.76 0.00 0.00 0.00
ISLANDS:(19<size class<28) 21 16 0.76 4.76 0.00 0.00 0.00
ISLANDS:(size class>29) 6 2 0.33 16.67 16.67 16.67 16.67

Missing rate Average 18.36 1.88 8.73 2.19

3.2 Item nonresponse model

The item nonresponses have been generated seeking to reproduce the item nonresponse
pattern of the business surveys.

The SME survey suffers from item nonresponses. Actually the survey has not flags for
item nonresponses and the item nonresponses are denoted by zero values.

To find out when a zero value means a real zero or a missing value, the 2008 SME data
have been linked with the 2008 administrative data; the zero SME values corresponding to a
non zero value in the administrative data have been identified as missing values.

A regression tree model (rpart R package) has been applied for estimating the relationship
between response propensity and outcome-related auxiliary variables known for the whole
population. To create missing values, response indicators were assigned to the units within
nonresponse cells defined by the regression tree. Within a given response cell, units were
assigned at random to be missing or nonmissing at a specified rate. The mechanism generat-
ing missingness assumes that there is a uniform response probability within each cell. This
is an usual assumption for the nonresponse model even though generally a more complex
unknown item nonresponse model holds. When the real nonresponse model disagrees with
the working model used for the imputation, the estimates are biased. However, the simulation
is focused on the variance estimate and then we define an experimental context in which the
point estimates are unbiased, for not creating confounding evidences.

Table 2 shows the strata missing rates (the last four columns) for the variables of interest.
Then, three type rates of item nonresponse appear: high for the CIF variable with average
equal to 18.36%, medium for the OEX variable with 8.73% and low for the PUC and LCO
variables with about 2% of nonresponse rate. Figure 1 underlines that for CIF variable the
missing rate increases when the frequency enlarges. For the other three variables the missing
rate is concentrated on the smaller values of the variable.

We checked the unbiasedness of the estimator after the hot-deck imputation computing
the empirical relative bias
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RB(ϑ̂) =
1
C

C∑
c=1

(ϑ̂c − θ)
θ

(18)

being ϑ̂c the estimate from the sample c drawn according to the sampling design of section
3.1 and C the number of drawn samples. To obtain a nearly zero relative bias C = 10, 000
samples have been selected.

Table 3 shows negligible bias for all estimates: e. g. the RB(ϑ̂)% are lower than 1%
except for the variable CIF when calibration with imputed data is considered (1.4%).

Table 3 - Relative bias(RB(ϑ̂)%) of the estimators

Estimators CIF PUC OEX LCO
HT with imputation 0.72 0.49 0.94 -0.09
CALIBRATION with imputation 1.40 0.51 0.97 -0.10

3.3 Results of the Monte Carlo simulation

Several methods are compared in the simulation. Furthermore, the following reference
variances

V (ϑ̂) =
10,000∑
c=1

(ϑ̂c − θ)2

10, 000
, (19)

hereinafter denoted as empirical or Monte Carlo variances, are computed.
For the HT estimator are considered the:

• unbiased variance estimator (Wolter 2007) denoted as STANDARD method;
• EDAGJK according to Kott (Kott 2001);
• EDAGJK.I: the modified EDAGJK (section 2.2 using the replicate weights given in the

(3);
• BOOTSTRAP.I: bootstrap variance methods under imputation (Shao and Sitter 1996);
• MI: using the Approximate Bayesian Bootstrap (ABB) (Kim et al. 2004, Brick et al.

2005).

For the calibration estimator have been compared the:

• TAYLOR variance estimator;
• EDAGJK.HT computed according to (4);
• EDAGJK.CAL computed according to (5);
• EDAGJK.HT.I: the modified EDAGJK (section 2.2) based on the correction factor (4);
• EDAGJK.CAL.I: the modified EDAGJK (section 2.2) based on the correction factor

(5);
• BOOTSTRAP.I: bootstrap variance methods under imputation (Shao and Sitter 1996);
• MI: using the ABB.

Note that the STANDARD, EDAGJK, TAYLOR, EDAGJK.HT and EDAGJK.CAL, do not
properly take into account the imputation correction.
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The complete simulation has implemented twelve variance methods by four variables.
The imputation procedure is performed and for seven variance estimators imputation adjuste-
ment is carried out as well. Then, computational issues led us to choose 1,000 replications in
performing the variance estimates for each method.

The accuracy of the variance estimates is measured with following summary statistics:

• The Relative (percentage) Bias of Variance estimation

RB[v(ϑ̂)]% = 100× v̄(ϑ̂)− V (ϑ̂)

V (ϑ̂)
. (20)

• The Relative (percentage) Root Mean Square Error of Variance estimation

RRMSE[v(ϑ̂)]% = 100×

√√√√√ 1
1,000

∑1,000
c=1

[
v(ϑ̂c)− V (ϑ̂)

]2
V (ϑ̂)2

. (21)

• The Coverage of the Confidence Interval (percentage), that is the percentage of inter-
vals including θ, based on the nominal 95 % confidence intervals computed for each of
1,000 simulations. We used the normal distribution as approximation of the t distribu-
tion

CCI[v(ϑ̂)]% = 100
1,000

∑1,000
c=1 δc where δc = 1 if θ ∈

(
ϑ̂c ± 1.96

√
v(ϑ̂c)

)
and δc = 0

otherwise.
• The Lower Error Rate and Upper Error Rate

LER[v(ϑ̂)]% = 100× 1
1,000 (number of samples with θ < −1.96

√
v(ϑ̂c) ),

UER[v(ϑ̂)]% = 100× 1
1,000 (number of samples with θ > +1.96

√
v(ϑ̂c) ).

Table 4 shows that for the variables with large nonresponse rate (CIF and OEX), the
methods that do not take properly into account the imputation process such as STANDARD,
EDAGJK, TAYLOR, EDAGJK.HT and EDAGJK.CAL produce large downward biased vari-
ance estimates. The result was definitely expected.

Furthermore for the OEX variable we observe a very large variability with the
RRMSE[v(ϑ̂)]% over than 177% for all the methods. The evidence is explained by the
positive skew distribution of this variable (figure 2).

The scatterplot of the 10,000 variance estimates versus the corresponding HT estimates
(figure 3) shows for the OEX variable two separate clouds, being the highest one around of
size 200. This is due to one extreme value within the stratum NORTH-WEST:(size class<8)
with the 0.02 sampling rate. For this stratum the expected percentage contribution to the
overall variance is around 85%. Furthermore, the stratum variance when the extreme value is
included is about 5 times the stratum variance when the extreme value is not included in the
sample.

The presence of rare extreme values is typical in the business surveys and then it is inter-
esting to study the behaviour of the estimators in this critical context.

In the following the main comments are focused on CIF variable, because it has the high-
est missing rate. As concerns the HT estimator EDAGJK.I and bootstrap methods, they pro-
duce RB[v(ϑ̂)]% around 7% but bootstrap has a smaller RRMSE[v(ϑ̂)]% than EDAGJK.I.
MI has the smallest RB[v(ϑ̂)]% with the drawback to be negative.
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Table 4 - Relative Bias (RB[v(ϑ̂)]) and Relative Root Means Square Error (RRMSE[v(ϑ̂)]) of the
variance estimators with imputed data

H-T estimator
RB[v(ϑ̂)]% RRMSE[v(ϑ̂)]%

Variance Estimator CIF PUC OEX LCO CIF PUC OEX LCO
STANDARD -27.15 -3.37 -8.96 -6.40 53.43 38.54 204.64 15.41
EDAGJK -21.26 3.11 -8.11 -0.30 57.94 45.90 178.76 31.26
EDAGJK.I 7.43 7.44 6.77 3.99 71.35 47.65 209.31 32.61
BOOTSTRAP.I 7.95 5.57 21.40 2.81 64.53 42.99 261.52 21.90
MI -2.83 2.36 -1.82 -3.08 66.74 40.96 205.00 15.58

Calibration estimator
RB[v(ϑ̂)]% RRMSE[v(ϑ̂)]%

TAYLOR -28.48 -6.21 -9.82 -7.55 53.90 43.93 227.47 23.82
EDAGJK.HT -19.76 3.60 -5.73 2.95 59.27 51.12 195.25 36.73
EDAGJK.CAL -18.24 6.79 -6.56 4.98 62.15 55.04 186.05 40.89
EDAGJK.HT.I 9.48 8.01 9.15 6.61 73.30 53.02 225.78 38.60
EDAGJK.CAL.I 11.51 11.31 8.23 8.75 77.73 56.85 215.29 42.76
BOOTSTRAP.I 5.71 6.57 14.43 4.79 64.38 48.84 244.40 27.39
MI -9.05 -4.46 -15.34 0.17 57.24 42.46 177.88 22.42

In case of calibration estimator, bootstrap outperforms the methods that consider specif-
ically the imputation in terms of RB[v(ϑ̂)]%. Nevertheless the modified EDAGJK methods
produce positive and not so largeRB[v(ϑ̂)]%. MI has negative bias, but outperfoms the other
estimators in terms ofRRMSE[v(ϑ̂)]%. The table 4 shows that EDAGJK.HT is slightly bet-
ter than EDAGJK.CAL at least for the CIF variable.

Table 5 shows the coverage of the confidance interval. The methods ignoring that many
values are imputed have a strong reduction of the coverage rates. MI does not show good
performaces, at least for the CIF variable, while a small decreasing of coverage is observed
for the rest of the resampling methods. The modified EDAGJK techniques and bootstrap are
essentially equivalent. For the calibration estimator, EDAGJK.CAL.I seems slightly better
than EDAGJK.HT.I and bootstrap. That occurs because of a larger RB[v(ϑ̂)]%.

Table 5 - Coverage of the Confidence Interval(CCI[v(ϑ̂)]), the Lower and Upper Error Rate
(LER[v(ϑ̂)], UER[v(ϑ̂)]) with imputed data

H-T estimator
CCI[v(ϑ̂)]% LER[v(ϑ̂)]% UER[v(ϑ̂)]%

Variance Estimator CIF PUC OEX LCO CIF PUC OEX LCO CIF PUC OEX LCO
STANDARD 88.40 94.50 90.40 94.40 7.50 1.20 1.00 1.40 4.10 4.30 8.60 4.20
EDAGJK 86.20 93.00 88.20 94.00 6.80 4.70 7.70 3.40 7.00 2.30 4.10 2.60
EDAGJK.I 91.10 93.70 89.90 94.40 4.20 4.20 6.90 3.10 4.70 2.10 3.20 2.50
BOOTSTRAP.I 92.30 93.80 90.30 95.90 2.90 4.20 7.10 2.30 4.80 2.00 2.60 1.80
MI 89.90 94.40 90.60 95.50 4.50 3.90 7.20 2.50 5.60 1.70 2.20 2.00

Calibration estimator
CCI[v(ϑ̂)]% LER[v(ϑ̂)]% UER[v(ϑ̂)]%

TAYLOR 88.20 94.20 90.20 93.40 7.70 1.80 0.90 2.00 4.10 4.00 8.90 4.60
EDAGJK.HT 86.20 92.70 89.40 93.60 6.50 5.30 7.00 3.00 7.30 2.00 3.60 3.40
EDAGJK.CAL 86.76 93.88 89.87 92.98 6.32 4.61 7.12 3.51 6.92 1.50 3.01 3.51
EDAGJK.HT.I 91.80 92.90 91.20 93.70 3.50 5.20 6.30 3.00 4.70 1.90 2.50 3.30
EDAGJK.CAL.I 92.38 94.18 91.57 93.68 3.71 4.41 5.82 3.21 3.91 1.40 2.61 3.11
BOOTSTRAP.I 92.00 93.72 90.08 95.65 3.24 4.66 6.88 1.92 4.76 1.62 3.04 2.43
MI 90.50 92.20 88.20 93.50 4.00 6.00 8.40 3.30 5.50 1.80 3.40 3.20
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Figure 2 - Distribution of the 10,000 HT esti-
mates

Figure 3 - Scatterplot of the HT esti-
mates versus standard variance esti-
mates

4. Conclusions

Many statistical surveys carried out by National Statistical Institutes are, generally, de-
fined by a large sample drawn according to a complex sampling design. Unit and item non
responses increase the trouble to make inference.

The paper investigates three variance estimators taking into account the item non re-
sponses when random hot deck imputation has been performed. Two of the three methods are
the standard bootstrap and the MI, while the third one is a new variance estimator. The pro-
posed method combines the EDAGJK technique proposed by Kott with the adjusted jackknife
proposed by Rao and Shao. The reasons leading to new estimator is the good compromise
among theoretical properties and practical aspects. In particular EDAGJK produces an un-
biased estimator (for complete data set), it is easy to implement and not computer intensive.
Furthermore, the adjusted jackknife does not require replications of the imputation procedure.

These features are quite appealing especially in a National Statistical Institute (NSI),
where data production based on large data sets must be automatized as much as possible.

The three methods have been compared by means of a Monte Carlo simulation based on
real business data and a sampling strategy resembling to the Small and Medium Entrerpise
survey conducted by the Italian Statistical Institute. The simulation results show that the mod-
ified EDAGJK4 with Rao and Shao adjustment produces nearly unbiased variance estimates
and it works well with respect to the two benchmarking methods in terms of accuracy and
coverage of coinfidance interval. Nevertheless the method is less computational demanding
than bootstrap and it does not require an increasing of complexity of the data production
process as for MI.

The paper show that for variable with an hight level of imputation the standard methods of
variance estimation deeply under-estimates the true variance, a best practice for a NSI should
be to consider the level of item non response for each variables and to performance

The empirical results shows that for variables with an high level of imputation rate, the
standard methods of variance estimation deeply under-estimate the true variance. Then a

4 An R function implementing the modified EDAGJK is available in the Deliverable 6.1 of the BLUE-Enterprise
and Trade Statistics project (Blue-ETS 2013).
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best practice for NSIs should be to make a screening, for the main variables of interest of
each business survey, of the item non response rates and to adopt valid variance estimation
methods for the variables affected by the highest (eg. >10%) item non response rates.

The information about the item non-response rates shuld be also disseminated to the ex-
ternal users. In fact, if the research institute releases a standard file with imputation flag
variable and the replicate weights, every users can compute the variance estimates for every
kind of unplanned domains of interest by a simple formula.
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